Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Liang-Chung Hsia"'
Publikováno v:
Transactions of the American Mathematical Society. 374:733-752
Let $K$ be the function field of a smooth, irreducible curve defined over $\overline{\mathbb{Q}}$. Let $f\in K[x]$ be of the form $f(x)=x^q+c$ where $q = p^{r}, r \ge 1,$ is a power of the prime number $p$, and let $\beta\in \overline{K}$. For all $n
Publikováno v:
Pacific Journal of Mathematics. 295:1-15
Given a smooth projective curve C defined over a number field and given two elliptic surfaces E_1/C and E_2/C along with sections P_i and Q_i of E_i (for i = 1,2), we prove that if there exist infinitely many algebraic points t on C such that for som
Autor:
Ghioca, Dragos1 dghioca@math.ubc.ca, Liang-Chung Hsia2 hsia@math.ntnu.edu.tw, Tucker, Thomas J.3 ttucker@math.rochester.edu
Publikováno v:
New York Journal of Mathematics. 2017, Vol. 23, p213-225. 13p.
We formulate a general question regarding the size of the iterated Galois groups associated to an algebraic dynamical system and then we discuss some special cases of our question.
18 pages. arXiv admin note: text overlap with arXiv:1810.00990
18 pages. arXiv admin note: text overlap with arXiv:1810.00990
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3b9b9ebb4066ea35694b44a5bc6c217b
http://arxiv.org/abs/1910.02828
http://arxiv.org/abs/1910.02828
Publikováno v:
Algebra Number Theory 7, no. 3 (2013), 701-732
Let $a(\lambda)$ and $b(\lambda)$ be two polynomials with coefficients in complex numbers and let $f_{\lamb$ be a one-parameter family of polynomials indexed by all complex numbers $\lambda$. We study whether there exist infinitely many complex numbe
Autor:
Thomas J. Tucker, Liang Chung Hsia
Publikováno v:
Algebra Number Theory 11, no. 6 (2017), 1437-1459
Following work of Bugeaud, Corvaja, and Zannier for integers, Ailon and Rudnick prove that for any multiplicatively independent polynomials, $a, b \in {\mathbb C}[x]$, there is a polynomial $h$ such that for all $n$, we have \[ \gcd(a^n - 1, b^n - 1)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::86405b591be0db9d6e4b98fdb799b9ab
http://arxiv.org/abs/1611.04115
http://arxiv.org/abs/1611.04115
Let $d>m>1$ be integers, let $c_1,\dots, c_{m+1}$ be distinct complex numbers, and let $\mathbf{f}(z):=z^d+t_1z^{m-1}+t_2z^{m-2}+\cdots + t_{m-1}z+t_m$ be an $m$-parameter family of polynomials. We prove that the set of $m$-tuples of parameters $(t_1
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eed6c2ebedb54cd0750a091b75423358
http://arxiv.org/abs/1610.09422
http://arxiv.org/abs/1610.09422
Autor:
Jean Yves Briend, Liang Chung Hsia
Publikováno v:
Acta Arithmetica
Acta Arithmetica, Instytut Matematyczny PAN, 2012, 153 (4), pp.415-428. ⟨10.4064/aa153-4-5⟩
Acta Arithmetica, 2012, 153 (4), pp.415-428. ⟨10.4064/aa153-4-5⟩
Acta Arithmetica, Instytut Matematyczny PAN, 2012, 153 (4), pp.415-428. ⟨10.4064/aa153-4-5⟩
Acta Arithmetica, 2012, 153 (4), pp.415-428. ⟨10.4064/aa153-4-5⟩
The aim of this note is to give an effective criterion to verify whether a cubic polynomial over a non-Archimedean field has a weak N\'{e}ron model or not.
Comment: 12 pages
Comment: 12 pages
Autor:
Liang Chung Hsia, Joseph H. Silverman
Publikováno v:
Pacific Journal of Mathematics. 249:321-342
Let ϕ(z) ∈ K(z) be a rational function of degree d ≥ 2 defined over a number field whose second iterate ϕ 2 (z) is not a polynomial, and let α ∈ K. The second author previously proved that the forward orbit O ϕ (α) contains only finitely m
Autor:
Liang Chung Hsia, Joseph H. Silverman
Publikováno v:
Journal de Théorie des Nombres de Bordeaux. 21:235-250
Soient ϕ: X → X un morphisme d'une variete definie sur un corps de nombres K, V ⊂ X une sous-variete definie sur K et O ϕ (P) = {ϕ n (P): n ≥ 0} l'orbite d'un point P ∈ X (K). Nous decrivons un principe local-global pour l'intersection V n