Zobrazeno 1 - 10
of 80
pro vyhledávání: '"Liang, P.S."'
Autor:
Esmaeili, B., Wu, H., Zimmermann, H., Van De Meent, J.-W., Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J.
Publikováno v:
35th Conference on Neural Information Processing Systems (NeurIPS 2021): online, 6-14 December 2021, 25, 20423-20435
We develop nested variational inference (NVI), a family of methods that learn proposals for nested importance samplers by minimizing an forward or reverse KL divergence at each level of nesting. NVI is applicable to many commonly-used importance samp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::51785d16c0042dd1c49bf765a64d644a
https://dare.uva.nl/personal/pure/en/publications/nested-variational-inference(5f85ab15-e452-4026-88d8-c8a924df6392).html
https://dare.uva.nl/personal/pure/en/publications/nested-variational-inference(5f85ab15-e452-4026-88d8-c8a924df6392).html
Autor:
Keller, T.A., Welling, M., Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J.
Publikováno v:
35th Conference on Neural Information Processing Systems (NeurIPS 2021): online, 6-14 December 2021, 34, 28585-28597
In this work we seek to bridge the concepts of topographic organization and equivariance in neural networks. To accomplish this, we introduce the Topographic VAE: a novel method for efficiently training deep generative models with topographically org
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::227cfa09cd39a2bdfdc98cdd5d2268c4
https://dare.uva.nl/personal/pure/en/publications/topographic-vaes-learn-equivariant-capsules(2f1c05d1-e81c-4b96-bf4f-aea3c8016fe4).html
https://dare.uva.nl/personal/pure/en/publications/topographic-vaes-learn-equivariant-capsules(2f1c05d1-e81c-4b96-bf4f-aea3c8016fe4).html
Autor:
Ferrari, V., Oswald, M.R., Pollefeys, M., Rozumnyi, D., Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J.
Publikováno v:
35th Conference on Neural Information Processing Systems (NeurIPS 2021): online, 6-14 December 2021, 36, 29972-29983
We address the novel task of jointly reconstructing the 3D shape, texture, andmotion of an object from a single motion-blurred image. While previous approachesaddress the deblurring problem only in the 2D image domain, our proposed rigorousmodeling o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::c66a903e85ceef8f49ce83f409deed86
https://dare.uva.nl/personal/pure/en/publications/shape-from-blur-recovering-textured-3d-shape-and-motion-of-fast-moving-objects(402ee23b-e119-4857-824f-b3604fe253e0).html
https://dare.uva.nl/personal/pure/en/publications/shape-from-blur-recovering-textured-3d-shape-and-motion-of-fast-moving-objects(402ee23b-e119-4857-824f-b3604fe253e0).html
Autor:
Forre, P., Hoogeboom, E., Jaini, P., Nielsen, D., Welling, M., Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J.
Publikováno v:
35th Conference on Neural Information Processing Systems (NeurIPS 2021): online, 6-14 December 2021, 15, 12454-12465
Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural images. This paper introduces two extensions of flows and diffusion for categorical data such as language or image segmentation: Argmax Flows a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::390b4179bf480870dd633eeb55ea60a9
https://dare.uva.nl/personal/pure/en/publications/argmax-flows-and-multinomial-diffusion-learning-categorical-distributions(4f332e79-de31-4e79-a875-76ce9385af54).html
https://dare.uva.nl/personal/pure/en/publications/argmax-flows-and-multinomial-diffusion-learning-categorical-distributions(4f332e79-de31-4e79-a875-76ce9385af54).html
Autor:
Asano, Y., Campbell, D., Feichtenhofer, C., Henriques, J., Metze, F., Misra, I., Patrick, M., Vedaldi, A., Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J.
Publikováno v:
35th Conference on Neural Information Processing Systems (NeurIPS 2021): online, 6-14 December 2021, 15, 12493-12506
In video transformers, the time dimension is often treated in the same way as the two spatial dimensions. However, in a scene where objects or the camera may move, a physical point imaged at one location in frame t may be entirely unrelated to what i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::84e87b61d3f2e1f7121b1a78b820aac2
https://dare.uva.nl/personal/pure/en/publications/keeping-your-eye-on-the-ball-trajectory-attention-in-video-transformers(65f2b469-7675-4555-ab2b-a191eb413e2b).html
https://dare.uva.nl/personal/pure/en/publications/keeping-your-eye-on-the-ball-trajectory-attention-in-video-transformers(65f2b469-7675-4555-ab2b-a191eb413e2b).html
Autor:
Asano, Y., Benussi, E., Dreyer, F., Iqbal, H., Kirk, H.R., Shtedritski, A., Volpin, F., Jun, Y., Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J.
Publikováno v:
35th Conference on Neural Information Processing Systems (NeurIPS 2021): online, 6-14 December 2021, 4, 2611-2624
The capabilities of natural language models trained on large-scale data have increased immensely over the past few years. Open source libraries such as HuggingFace have made these models easily available and accessible. While prior research has ident
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::9e7e388c40bda154e333215beb221b4a
https://dare.uva.nl/personal/pure/en/publications/bias-outofthebox-an-empirical-analysis-of-intersectional-occupational-biases-in-popular-generative-language-models(00579d88-a26f-4a67-be26-b7c84f75c5b8).html
https://dare.uva.nl/personal/pure/en/publications/bias-outofthebox-an-empirical-analysis-of-intersectional-occupational-biases-in-popular-generative-language-models(00579d88-a26f-4a67-be26-b7c84f75c5b8).html
Autor:
Gavves, E., Kofinas, M., Nagaraja, N., Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J.
Publikováno v:
35th Conference on Neural Information Processing Systems (NeurIPS 2021): online, 6-14 December 2021, 8, 6417-6429
Modelling interactions is critical in learning complex dynamical systems, namely systems of interacting objects with highly non-linear and time-dependent behaviour. A large class of such systems can be formalized as geometric graphs, i.e. graphs with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::2ecd09a02bdf3f61a92f09206ff007ff
https://dare.uva.nl/personal/pure/en/publications/rototranslated-local-coordinate-frames-for-interacting-dynamical-systems(5c8a8182-8dce-4fdb-bacf-98d987af0bfd).html
https://dare.uva.nl/personal/pure/en/publications/rototranslated-local-coordinate-frames-for-interacting-dynamical-systems(5c8a8182-8dce-4fdb-bacf-98d987af0bfd).html
Autor:
Ghadimi Atigh, M., Keller-Ressel, M., Mettes, P., Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J.
Publikováno v:
35th Conference on Neural Information Processing Systems (NeurIPS 2021): online, 6-14 December 2021, 1, 103-115
Hyperbolic space has become a popular choice of manifold for representation learning of various datatypes from tree-like structures and text to graphs. Building on the success of deep learning with prototypes in Euclidean and hyperspherical spaces, a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::b641a1c65e04c07653844aaa020440bc
https://dare.uva.nl/personal/pure/en/publications/hyperbolic-busemann-learning-with-ideal-prototypes(8ea6d6ee-5303-4843-8e20-504c6fdf4d97).html
https://dare.uva.nl/personal/pure/en/publications/hyperbolic-busemann-learning-with-ideal-prototypes(8ea6d6ee-5303-4843-8e20-504c6fdf4d97).html
Autor:
Cole, A., Forre, P., Louppe, G., Miller, B.K., Weniger, C., Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J.
Publikováno v:
35th Conference on Neural Information Processing Systems (NeurIPS 2021): online, 6-14 December 2021, 1, 129-143
Parametric stochastic simulators are ubiquitous in science, often featuring high-dimensional input parameters and/or an intractable likelihood. Performing Bayesian parameter inference in this context can be challenging. We present a neural simulation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::952aededcc57e16d949a557c3e575561
https://dare.uva.nl/personal/pure/en/publications/truncated-marginal-neural-ratio-estimation(e6f23068-5d5b-492f-8318-25195a90abdb).html
https://dare.uva.nl/personal/pure/en/publications/truncated-marginal-neural-ratio-estimation(e6f23068-5d5b-492f-8318-25195a90abdb).html
Autor:
Sofiene, J., Gyurik, C.F.S., Marshall, S.C., Briegel, H., Dunjko, V., Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J.
Publikováno v:
Advances in neural information processing systems, 28362-28375
STARTPAGE=28362;ENDPAGE=28375;TITLE=Advances in neural information processing systems
STARTPAGE=28362;ENDPAGE=28375;TITLE=Advances in neural information processing systems
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::57ec857853343b425f2714cfbbcd5a22
https://hdl.handle.net/1887/3571976
https://hdl.handle.net/1887/3571976