Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Liana Heuberger"'
Publikováno v:
Épijournal de Géométrie Algébrique, Vol Volume 5 (2021)
Reid's recipe for a finite abelian subgroup $G\subset \text{SL}(3,\mathbb{C})$ is a combinatorial procedure that marks the toric fan of the $G$-Hilbert scheme with irreducible representations of $G$. The geometric McKay correspondence conjecture of C
Externí odkaz:
https://doaj.org/article/364bf19f811145f38a6f90b3f0ec8b48
Autor:
Liana Heuberger
Publikováno v:
European Journal of Mathematics. 8:952-971
Reid's recipe for a finite abelian subgroup $G\subset \text{SL}(3,\mathbb{C})$ is a combinatorial procedure that marks the toric fan of the $G$-Hilbert scheme with irreducible representations of $G$. The geometric McKay correspondence conjecture of C
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::97f05a9bb29360917de9dc59ccb4b085
https://epiga.episciences.org/6085
https://epiga.episciences.org/6085
Autor:
Alessio Corti, Liana Heuberger
Publikováno v:
manuscripta mathematica. 153:71-118
We classify non-smooth del Pezzo surfaces with \(\frac{1}{3}(1,1)\) points in 29 qG-deformation families grouped into six unprojection cascades (this overlaps with work of Fujita and Yasutake in Classification of log del Pezzo surfaces of index three
Autor:
Alexander M. Kasprzyk, Andrea Petracci, Ketil Tveiten, Alessio Corti, Mohammad Akhtar, Alessandro Oneto, Liana Heuberger, Thomas Prince, Tom Coates
We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equival
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::75db84557a4d6b611dc16a133e1b1f9f