Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Lian, Yanlu"'
The Tammes problem delves into the optimal arrangement of $N$ points on the surface of the $n$-dimensional unit sphere (denoted as $\mathbb{S}^{n-1}$), aiming to maximize the minimum distance between any two points. In this paper, we articulate the s
Externí odkaz:
http://arxiv.org/abs/2411.16038
Let $\omega>0$. Given a strongly continuous semigroup $\{e^{tA}\}$ on a Banach space and an element $f\in\mathbf{D}(A^2)$ satisfying the exponential orbital estimates $$\|e^{tA}f\|\leq e^{-\omega t}\|f\| \quad\text{and}\quad \|e^{tA}A^2f\|\leq e^{-\o
Externí odkaz:
http://arxiv.org/abs/2307.12016
In this paper, we present the first nontrivial lower bound on the translative covering density of octahedron. To this end, we show the lower bound, in any translative covering of octahedron, on the density relative to a given parallelehedron. The res
Externí odkaz:
http://arxiv.org/abs/2304.07833
Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of $\mathbb{Z}^n$ by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of $\mathb
Externí odkaz:
http://arxiv.org/abs/2301.05834
The polygon $P$ is small if its diameter equals one. When $n=2^s$, it is still an open problem to find the maximum perimeter or the maximum width of a small $n$-gon. Motivated by Bingane's series of works, we improve the lower bounds for the maximum
Externí odkaz:
http://arxiv.org/abs/2108.13284
In 1957, Hadwiger made a conjecture that every $n$-dimensional convex body can be covered by $2^n$ translations of its interior. The Hadwiger's covering functional $\gamma_m(K)$ is the smallest positive number $r$ such that $K$ can be covered by $m$
Externí odkaz:
http://arxiv.org/abs/2108.13277
Autor:
Lian, Yanlu, Wu, Senlin
For each positive integer $m$ and each real finite dimensional Banach space $X$, we set $\beta(X,m)$ to be the infimum of $\delta\in (0,1]$ such that each set $A\subset X$ having diameter $1$ can be represented as the union of $m$ subsets of $A$ whos
Externí odkaz:
http://arxiv.org/abs/2103.10679
Autor:
Lian, Yanlu, zhang, Yuqin
In 1957, Hadwiger made the famous conjecture that any convex body of $n$-dimensional Euclidean space $\mathbb{E}^n$ can be covered by $2^n$ smaller positive homothetic copies. Up to now, this conjecture is still open for all $n\geq 3$. Denote by $\ga
Externí odkaz:
http://arxiv.org/abs/2103.10004
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.