Zobrazeno 1 - 10
of 117
pro vyhledávání: '"Lian, Bong H."'
It has been conjectured that the hemisphere partition function arXiv:1308.2217, arXiv:1308.2438 in a gauged linear sigma model (GLSM) computes the central charge arXiv:math/0212237 of an object in the bounded derived category of coherent sheaves for
Externí odkaz:
http://arxiv.org/abs/2307.02038
Autor:
Lian, Bong H., Linshaw, Andrew R.
This paper begins with a brief survey of the period prior to and soon after the creation of the theory of vertex operator algebras (VOAs). This survey is intended to highlight some of the important developments leading to the creation of VOA theory.
Externí odkaz:
http://arxiv.org/abs/2107.03243
In this article, we study mirror symmetry for pairs of singular Calabi--Yau manifolds which are double covers of toric manifolds. Their period integrals can be seen as certain `fractional' analogues of those of ordinary complete intersections. This n
Externí odkaz:
http://arxiv.org/abs/2008.04039
The presented paper is a continuation of the series of papers arXiv:1810.00606 and arXiv:1903.09373. In this paper, utilizing Batyrev and Borisov's duality construction on nef-partitions, we generalize the recipe in arXiv:1810.00606 and arXiv:1903.09
Externí odkaz:
http://arxiv.org/abs/2003.07148
From the viewpoint of mirror symmetry, we revisit the hypergeometric system $E(3,6)$ for a family of K3 surfaces. We construct a good resolution of the Baily-Borel-Satake compactification of its parameter space, which admits special boundary points (
Externí odkaz:
http://arxiv.org/abs/1810.00606
In this paper, we study the zero loci of local systems of the form $\delta\Pi$, where $\Pi$ is the period sheaf of the universal family of CY hypersurfaces in a suitable ambient space $X$, and $\delta$ is a given differential operator on the space of
Externí odkaz:
http://arxiv.org/abs/1709.00713
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lian, Bong H., Zhu, Minxian
In [HLY1], Hosono, Lian, and Yau posed a conjecture characterizing the set of solutions to certain Gelfand-Kapranov-Zelevinsky hypergeometric equations which are realized as periods of Calabi-Yau hypersurfaces in a Gorenstein Fano toric variety $X$.
Externí odkaz:
http://arxiv.org/abs/1610.07125
Publikováno v:
Nuc. Phys. B. Vol 898, 693-706, 2015
Period mappings were introduced in the sixties [G] to study variation of complex structures of families of algebraic varieties. The theory of tautological systems was introduced recently [LSY,LY] to understand period integrals of algebraic manifolds.
Externí odkaz:
http://arxiv.org/abs/1512.05111
We give a new geometrical interpretation of the local analytic solutions to a differential system, which we call a tautological system $\tau$, arising from the universal family of Calabi-Yau hypersurfaces $Y_a$ in a $G$-variety $X$ of dimension $n$.
Externí odkaz:
http://arxiv.org/abs/1508.00406