Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Liamidi Leadi"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2023, Iss 38,, Pp 1-29 (2023)
Externí odkaz:
https://doaj.org/article/a70e024a81034a739748063f0bf014ca
Publikováno v:
Electronic Journal of Differential Equations, Vol 2020, Iss 21,, Pp 1-17 (2020)
We study the maximum and antimaximum principles for the p-Laplacian operator under Steklov boundary conditions with an indefinite weight $$\displaylines{ -\Delta_p u + |u|^{p-2}u = 0 \quad \text{in }\Omega, \cr |\nabla u|^{p-2}\frac{\partial u}{\p
Externí odkaz:
https://doaj.org/article/dfd6f8cd5f1c4743a0792dcd3df1eade
Publikováno v:
Advances in Mathematical Physics, Vol 2022 (2022)
This paper extends the eigensurface of p-bilaplacian operator to examine existence and simplicity of the first eigensurface for the third-order spectrum of p,q-biharmonic systems subject to boundary conditions.
Externí odkaz:
https://doaj.org/article/af8c498d65c94507899f11dc6e264760
Publikováno v:
Malaya Journal of Matematik. 10:63-78
Autor:
Liamidi Leadi, Aboubacar Marcos
Publikováno v:
Electronic Journal of Differential Equations, Vol 2011, Iss 82,, Pp 1-13 (2011)
In this work we give necessary and sufficient conditions for having a maximum principle for cooperative elliptic systems involving p-Laplacian operator on a bounded domain. This principle is then used to yield solvability for the considered cooperati
Externí odkaz:
https://doaj.org/article/c2b65a84a419402699b046c50b13aa16
Autor:
Liamidi Leadi, Aboubacar Marcos
Publikováno v:
Electronic Journal of Differential Equations, Vol 2010, Iss 60,, Pp 1-13 (2010)
In this work we give necessary and sufficient conditions for having a maximum principle for cooperative elliptic systems involving p-Laplacian operator on the whole $mathbb{R}^{N}$. This principle is then used to yield solvability for the cooperative
Externí odkaz:
https://doaj.org/article/f402f8ccdac14095afd2635b72498481
Autor:
Jean-Pierre Gossez, Liamidi Leadi
Publikováno v:
Electronic Journal of Differential Equations, Vol Conference, Iss 14, Pp 207-222 (2006)
We work on the whole $R^N$ and prove the existence of a first nonprincipal eigenvalue for an asymmetric problem with weights involving the p-Laplacian. As an application we obtain a first nontrivial curve in the corresponding Fucik spectrum.
Externí odkaz:
https://doaj.org/article/a0a4a33658c742f3a3bb1b3d2d0ec8c0
Autor:
Liamidi Leadi, Mabel Cuesta
Publikováno v:
Nonlinear Differential Equations and Applications NoDEA. 28
In this work we study the existence of positive solutions and nodal solutions for the following p-Laplacian problem with Steklov boundary conditions on a bounded regular domain $$\Omega \subset {\mathbb {R}}^N$$ , $$\begin{aligned} \left\{ \begin{arr
Autor:
Liamidi Leadi, Aboubacar Marcos
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2007 (2007)
We show the existence of a first curve in the Fučik spectrum with weights for the p-Laplacian under mixed boundary conditions. We also study the asymptotic behavior of this first curve.
Externí odkaz:
https://doaj.org/article/409ab20cb8e6455eacbaf09aa1fa3a60
Publikováno v:
Journal of Mathematical Analysis and Applications. 425:1004-1038
We study two asymmetric Steklov problems with indefinite weights involving the p-Laplacian operator. We prove the existence of a first nontrivial eigenvalue for the first problem and the second one serves as an application in the description of the b