Zobrazeno 1 - 10
of 130
pro vyhledávání: '"Li ZongRen"'
Publikováno v:
IEEE Access, Vol 11, Pp 42895-42908 (2023)
Aiming at the task of automatic brain tumor segmentation, this paper proposes a new DenseTrans network. In order to alleviate the problem that convolutional neural networks(CNN) cannot establish long-distance dependence and obtain global context info
Externí odkaz:
https://doaj.org/article/2651c5ea258e40fbada6aa0624b0f039
Publikováno v:
Frontiers in Neuroscience, Vol 17 (2023)
IntroductionRecently, the Transformer model and its variants have been a great success in terms of computer vision, and have surpassed the performance of convolutional neural networks (CNN). The key to the success of Transformer vision is the acquisi
Externí odkaz:
https://doaj.org/article/0856e946bede4f62ba0bfd3d51551e2e
Autor:
Yang, Runzhao, Chen, Yinda, Zhang, Zhihong, Liu, Xiaoyu, Li, Zongren, He, Kunlun, Xiong, Zhiwei, Suo, Jinli, Dai, Qionghai
In the field of medical image compression, Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios, yet they are constrained by a one-to-one fitting approach that results in lengthy enc
Externí odkaz:
http://arxiv.org/abs/2405.16850
Autor:
Cheng, Yuxiao, Li, Lianglong, Xiao, Tingxiong, Li, Zongren, Zhong, Qin, Suo, Jinli, He, Kunlun
Causal discovery in time-series is a fundamental problem in the machine learning community, enabling causal reasoning and decision-making in complex scenarios. Recently, researchers successfully discover causality by combining neural networks with Gr
Externí odkaz:
http://arxiv.org/abs/2305.05890
Autor:
Cheng, Yuxiao, Yang, Runzhao, Xiao, Tingxiong, Li, Zongren, Suo, Jinli, He, Kunlun, Dai, Qionghai
Publikováno v:
The Eleventh International Conference on Learning Representations, Feb. 2023
Causal discovery from time-series data has been a central task in machine learning. Recently, Granger causality inference is gaining momentum due to its good explainability and high compatibility with emerging deep neural networks. However, most exis
Externí odkaz:
http://arxiv.org/abs/2302.07458
Autor:
Hu, Xiangyue, Dong, Chunxiao, Zou, Dulei, Wei, Chao, Wang, Yani, Li, Zongren, Duan, Haoyun, Li, Zongyi
Publikováno v:
In Experimental Cell Research 1 October 2024 442(2)
Publikováno v:
In Optical Materials September 2024 155
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Forestry Research (1007662X); 12/28/2024, Vol. 36 Issue 1, p1-12, 12p
Autor:
Yang, Feifei, Chen, Xiaotian, Lin, Xixiang, Chen, Xu, Wang, Wenjun, Liu, Bohan, Li, Yao, Pu, Haitao, Zhang, Liwei, Huang, Dangsheng, Zhang, Meiqing, Li, Xin, Wang, Hui, Wang, Yueheng, Guo, Huayuan, Deng, Yujiao, Zhang, Lu, Zhong, Qin, Li, Zongren, Yu, Liheng, Duan, Yongjie, Zhang, Peifang, Wu, Zhenzhou, Burkhoff, Daniel, Wang, Qiushuang, He, Kunlun
Publikováno v:
In JACC: Cardiovascular Imaging April 2022 15(4):551-563