Zobrazeno 1 - 10
of 1 943
pro vyhledávání: '"Li, YuXiang"'
Autor:
Mao, Xuan, Li, Yuxiang
This paper is concerned with a three-component chemotaxis model accounting for indirect signal production, reading as $u_t = \nabla\cdot(\nabla u - u\nabla v)$, $v_t = \Delta v - v + w$ and $0 = \Delta w - w + u$, posed on a smoothly bounded domain $
Externí odkaz:
http://arxiv.org/abs/2412.10772
We study the compactness of Willmore surfaces without assuming the convergence of the induced complex structures. In particular, we compute the energy loss in the neck in terms of the residue and we prove that the limit of the image of the Gauss map
Externí odkaz:
http://arxiv.org/abs/2411.06453
Autor:
Zhang, Zhiguang, Li, Yuxiang
This paper is concerned with the doubly degenerate nutrient taxis system $u_t=\nabla \cdot(u^{l-1} v \nabla u)- \nabla \cdot\left(u^{l} v \nabla v\right)+ uv$ and $v_t=\Delta v-u v$ for some $l \geqslant 1$, subjected to homogeneous Neumann boundary
Externí odkaz:
http://arxiv.org/abs/2411.01133
Autor:
Zhang, Zhiguang, Li, Yuxiang
In this work, we study the doubly degenerate nutrient taxis system with logistic source \begin{align} \begin{cases}\tag{$\star$}\label{eq 0.1} u_t=\nabla \cdot(u^{l-1} v \nabla u)- \nabla \cdot\left(u^{l} v \nabla v\right)+ u - u^2, \\ v_t=\Delta v-u
Externí odkaz:
http://arxiv.org/abs/2410.19833
Autor:
Mao, Xuan, Li, Yuxiang
This paper is concerned with a quasilinear chemotaxis model with indirect signal production, $u_t = \nabla\cdot(D(u)\nabla u - S(u)\nabla v)$, $v_t = \Delta v - v + w$ and $w_t = \Delta w - w + u$, posed on a bounded smooth domain $\Omega\subset\math
Externí odkaz:
http://arxiv.org/abs/2410.13238
Autor:
Zeng, Ziyue, Li, Yuxiang
We investigate the following repulsion-consumption system with flux limitation \begin{align}\tag{$\star$} \left\{ \begin{array}{ll} u_t=\Delta u+\nabla \cdot(uf(|\nabla v|^2) \nabla v), & x \in \Omega, t>0, \tau v_t=\Delta v-u v, & x \in \Omega, t>0,
Externí odkaz:
http://arxiv.org/abs/2409.05115
Autor:
Zeng, Ziyue, Li, Yuxiang
This paper investigates the repulsion-consumption system \begin{align}\tag{$\star$} \left\{ \begin{array}{ll} u_t=\Delta u+\nabla \cdot(S(u) \nabla v), \tau v_t=\Delta v-u v, \end{array} \right. \end{align} under no-flux/Dirichlet conditions for $u$
Externí odkaz:
http://arxiv.org/abs/2409.01853
For conformal metrics with conical singularities and positive curvature on $\mathbb S^2$, we prove a convergence theorem and apply it to obtain a criterion for nonexistence in an open region of the prescribing data. The core of our study is a fine an
Externí odkaz:
http://arxiv.org/abs/2408.12201
On a compact surface, we prove existence and uniqueness of the conformal metric whose curvature is prescribed by a negative function away from finitely many points where the metric has prescribed angles presenting cusps or conical singularities.
Externí odkaz:
http://arxiv.org/abs/2408.12195
Autor:
Li, Yuxiang, Yin, Hao
In this paper, we study the blow-up of Willmore surfaces. By using the 3-circle theorem, we prove a decay estimate of the second fundamental form along the neck region. This estimate provides a new perspective and streamlined proofs to a few key resu
Externí odkaz:
http://arxiv.org/abs/2406.02828