Zobrazeno 1 - 10
of 173
pro vyhledávání: '"Li, Y. Charles"'
Autor:
Feng, Z. C., Li, Y. Charles
We introduce a population-age-time (PAT) model which describes the temporal evolution of the population distribution in age. The surprising result is that the qualitative nature of the population distribution dynamics is robust with respect to the bi
Externí odkaz:
http://arxiv.org/abs/2111.13801
Autor:
Feng, Z. C., Li, Y. Charles
We introduced a more general predator-prey model to analyze the paradox of enrichment. We hope the results obtained for the model can guide us on identifying real field paradox of enrichment.
Externí odkaz:
http://arxiv.org/abs/2010.08117
Autor:
Li, Y. Charles
Through a simple and elegant argument, we prove that the norm of the derivative of the solution operator of Euler equations posed in the Sobolev space $H^n$, along any base solution that is in $H^n$ but not in $H^{n+1}$, is infinite. We also review t
Externí odkaz:
http://arxiv.org/abs/2009.03967
Ruelle predicted that the maximal amplification of perturbations in homogeneous isotropic turbulence is exponential $e^{\sigma \sqrt{Re} t}$ (where $\sigma \sqrt{Re}$ is the maximal Liapunov exponent). In our earlier works, we predicted that the maxi
Externí odkaz:
http://arxiv.org/abs/1908.04838
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Li, Y. Charles
This article discusses dependence on initial conditions in natural and social sciences with focus on physical science. The main focus is on the newly discovered rough dependence on initial data.
Externí odkaz:
http://arxiv.org/abs/1805.06516
Autor:
Inci, Hasan, Li, Y. Charles
We consider the incompressible 2D Euler equations on bounded spatial domain $S$, and study the solution map on the Sobolev spaces $H^k(S)$ ($k > 2$). Through an elaborate geometric construction, we show that for any $T >0$, the time $T$ solution map
Externí odkaz:
http://arxiv.org/abs/1805.06507
Autor:
Li, Y. Charles
We present some new discoveries on the mathematical foundation of linear hydrodynamic stability theory. The new discoveries are: 1. Linearized Euler equations fail to provide a linear approximation on inviscid hydrodynamic stability. 2. Eigenvalue in
Externí odkaz:
http://arxiv.org/abs/1711.00505
Autor:
Feng, Z. C., Li, Y. Charles
Short term unpredictability is discovered numerically for high Reynolds number fluid flows under periodic boundary conditions. Furthermore, the abundance of the short term unpredictability is also discovered. These discoveries support our theory that
Externí odkaz:
http://arxiv.org/abs/1702.02993
Autor:
ZAICHUN FENG1 fengf@missouri.edu, LI, Y. CHARLES2 liyan@missouri.edu
Publikováno v:
Electronic Journal of Differential Equations. 2023, Issue 74, p1-10. 10p.