Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Li, Shunbao"'
In the rapidly evolving field of artificial intelligence (AI), the application of large language models (LLMs) in agriculture, particularly in pest management, remains nascent. We aimed to prove the feasibility by evaluating the content of the pest m
Externí odkaz:
http://arxiv.org/abs/2403.11858
Pest identification is a crucial aspect of pest control in agriculture. However, most farmers are not capable of accurately identifying pests in the field, and there is a limited number of structured data sources available for rapid querying. In this
Externí odkaz:
http://arxiv.org/abs/2308.03107
Publikováno v:
In Journal of Industrial Information Integration November 2024 42
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Li, Shunbao1,2 (AUTHOR), Chen, Hui1 (AUTHOR), Zhou, Li1 (AUTHOR), Cui, Hehe1 (AUTHOR), Liang, Siwen1 (AUTHOR), Li, Hongwei1 (AUTHOR)
Publikováno v:
Scandinavian Journal of Clinical & Laboratory Investigation. Jul2022, Vol. 82 Issue 4, p304-310. 7p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Shanghai Normal University (Natural Sciences), Vol 48, Iss 4, Pp 356-361 (2019)
A novel posture similarity calculation method using self-adaptive joint weight was proposed in this paper.Kinect was selected to collect posture information,using which the human skeleton joint data was acquired.In order to accommodate various body s
High discriminative SIFT feature and feature pair selection to improve the bag of visual words model
Publikováno v:
IET Image Processing. 11:994-1001
The bag of visual words (BOW) model has been widely applied in the field of image recognition and image classification. However, all scale-invariant feature transform (SIFT) features are clustered to construct the visual words which result in a subst
Publikováno v:
Neural computation. 29(11)
The traditional [Formula: see text]-means algorithm has been widely used as a simple and efficient clustering method. However, the performance of this algorithm is highly dependent on the selection of initial cluster centers. Therefore, the method ad
Publikováno v:
DEStech Transactions on Engineering and Technology Research.
The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, a novel algo