Zobrazeno 1 - 10
of 161
pro vyhledávání: '"Li, Baode"'
Let $\mu$ be a Radon measure on $\mathbb R^{d}$ which may be non-doubling and only satisfies $\mu(Q(x,l))\le C_{0}l^{n}$} for all $x\in \mathbb R^{d}$, $l(Q)>0$, with some fixed constants $C_{0}>0$ and $n\in (0,d]$. We introduce a new type of $bmo(\m
Externí odkaz:
http://arxiv.org/abs/2410.09424
Let $0<\alpha<1$. We obtain the boundedness of the discrete fractional Hardy-Littlewood maximal operators ${\mathcal M}_\alpha$ on discrete weighted Lebesgue spaces. From this and a discrete version of Whitney decomposition theorem, we deduce the bou
Externí odkaz:
http://arxiv.org/abs/2310.08458
We introduce a new class of weighted local approximate atoms including classical weighted local atoms. Then we further obtain the weighted local approximate atomic decompositions of weighted local Hardy spaces $h_{\omega} ^p(R^n)$ with $0
Externí odkaz:
http://arxiv.org/abs/2309.00899
In the paper, we proposed the Dantzig selector based on the $l_{p-q}$ ($0
Externí odkaz:
http://arxiv.org/abs/2309.00895
In this paper, we introduce a discrete version of weighted Morrey spaces, and discuss the inclusion relations of these spaces. In addition, we obtain the boundedness of discrete weighted Hardy-Littlewood maximal operators on discrete weighted Lebesgu
Externí odkaz:
http://arxiv.org/abs/2309.00804
We obtain some new characterizations of a variable version of Lipschitz spaces in terms of the boundedness of commutators of sharp maximal functions, fractional maximal functions or fractional maximal commutators in the context of the variable Lebesg
Externí odkaz:
http://arxiv.org/abs/2211.08756
Publikováno v:
In Ocean Engineering 1 December 2024 313 Part 1
Publikováno v:
In Ocean Engineering 15 May 2024 300
We study the relationship between the concept of a continuous ellipsoid $\Theta$ cover of $\mathbb{R}^n$, which was introduced by Dahmen, Dekel, and Petrushev, and the space of homogeneous type induced by $\Theta$. We characterize the class of quasi-
Externí odkaz:
http://arxiv.org/abs/2102.04602
Let $A$ be an expansive dilation on $\mathbb{R}^n$, and $p(\cdot):\mathbb{R}^n\rightarrow(0,\,\infty)$ be a variable exponent function satisfying the globally log-H\"{o}lder continuous condition. Let $H^{p(\cdot)}_A({\mathbb {R}}^n)$ be the variable
Externí odkaz:
http://arxiv.org/abs/2011.09666