Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Leyla BUGAY"'
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society. 46
Autor:
Leyla Bugay
Publikováno v:
TURKISH JOURNAL OF MATHEMATICS. 45:281-287
Autor:
Leyla Bugay, Melek Yağci
Publikováno v:
Volume: 8, Issue: 2 71-78
Mathematical Sciences and Applications E-Notes
Mathematical Sciences and Applications E-Notes
Let $DP_{n}$ and $ODP_{n}$ be the semigroups of all isometries and of all order-preserving isometries on $X_{n}$,respectively. In this paper we investigate the structure of minimal generating sets of the subsemigroup$DP_{n,r}$= {α ∈ DPn : |im (α)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38960fe8ebd4d38c220466337461df5c
https://dergipark.org.tr/tr/pub/mathenot/issue/57179/723297
https://dergipark.org.tr/tr/pub/mathenot/issue/57179/723297
Autor:
Leyla Bugay
Publikováno v:
Volume: 22, Issue: 2 669-678
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Let I_n, S_n and A_n be the symmetric inverse semigroup, the symmetric group and the alternating group on X_n={1,…,n}, for n≥2, respectively. Also let I_(n,r) be the subsemigroup consists of all partial injective maps with height less than or equ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7f4ef9ff47a3ec1df78c1d46666e1715
https://dergipark.org.tr/tr/pub/baunfbed/issue/53255/745821
https://dergipark.org.tr/tr/pub/baunfbed/issue/53255/745821
Autor:
Hayrullah Ayik, Leyla Bugay
Publikováno v:
Volume: 42, Issue: 5 2270-2278
Turkish Journal of Mathematics
Turkish Journal of Mathematics
Let $I_{n}$ be the symmetric inverse semigroup, and let $PODI_{n}$ and $POI_{n}$ be its subsemigroups of monotone partial bijections and of isotone partial bijections on $X_{n}=\{1,\ldots ,n\}$ under its natural order, respectively. In this paper we
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society. 42:921-932
For $$n\in \mathbb {N}$$ , let $$O_{n}$$ be the semigroup of all order-preserving transformations on the finite chain $$X_{n}=\{1,\ldots ,n\}$$ , under its natural order. For any non-empty subset A of $$X_{n}$$ , let $$O_{n}(A)$$ and $$O_{n}^+(A)$$ b
Autor:
Leyla Bugay
Publikováno v:
Volume: 8, Issue: 1 25-28
Mathematical Sciences and Applications E-Notes
Mathematical Sciences and Applications E-Notes
Let $S_{n}$ be the symmetric group on $X_{n}=\{1, \dots, n\}$, for $n\geq 2$. In this paper we state some properties of subsemigroups generated by two involutions (a permutation with degree $2$) $\alpha,\beta$ such that $\alpha\beta$ is an $n$-cycle,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::17a23a7b36dcb03fc6203403160d42e6
https://dergipark.org.tr/tr/pub/mathenot/issue/53229/608443
https://dergipark.org.tr/tr/pub/mathenot/issue/53229/608443
Autor:
Leyla Bugay
Publikováno v:
Volume: 49, Issue: 6 1988-1996
Hacettepe Journal of Mathematics and Statistics
Hacettepe Journal of Mathematics and Statistics
Let $T_{n}$ be the (full) transformation semigroup, and let $OCT_{n}$ and $ORCT_{n}$ be its subsemigroups of isotone contractions and of monotone contractions on a finite chain $X_{n}=\{1,\ldots ,n\}$ under its natural order, respectively. In this st
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::82a3ac99a5413a1db553107596fb1096
https://dergipark.org.tr/tr/pub/hujms/issue/58150/604715
https://dergipark.org.tr/tr/pub/hujms/issue/58150/604715
Let $$I_{n}$$ be the symmetric inverse semigroup on $$X_{n}=\{1,\ldots ,n\}$$ , and let $$DP_{n}$$ and $$ODP_{n}$$ be its subsemigroups of partial isometries and of order-preserving partial isometries on $$X_{n}$$ under its natural order, respectivel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b1f02024c5ce1a9c1e7b0a5e80bd7d2b
https://hdl.handle.net/20.500.12605/21771
https://hdl.handle.net/20.500.12605/21771
Publikováno v:
TURKISH JOURNAL OF MATHEMATICS. 39:763-772
For two finite monoids S and T, we prove that the second integral homology of the Schützenberger product S{lozenge, open}T is equal to H2(S{lozenge, open}T) = H2(S) x H2(T) x (H1(S) ?Z H1(T)) as the second integral homology of the direct product of