Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Leykin, Dmitry"'
Autor:
Bernatska, Julia, Leykin, Dmitry
Publikováno v:
Lett Math Phys 113, 110 (2023)
In this paper we propose a method of solving the Jacobi inversion problem in terms of multiply periodic $\wp$ functions, also called Kleinian $\wp$ functions. This result is based on the recently developed theory of multivariable sigma functions for
Externí odkaz:
http://arxiv.org/abs/2212.14492
We consider multi-variable sigma function of a genus $g$ hyperelliptic curve as a function of two group of variables -jacobian variables and parameters of the curve. In the theta-functional representation of sigma-function, the second group arises as
Externí odkaz:
http://arxiv.org/abs/1810.11079
Autor:
Bernatska, Julia1 (AUTHOR) jbernatska@gmail.com, Leykin, Dmitry2 (AUTHOR)
Publikováno v:
Letters in Mathematical Physics. Oct2023, Vol. 113 Issue 5, p1-38. 38p.
Autor:
Bernatska, Julia, Leykin, Dmitry
Publikováno v:
SIGMA 14 (2018), 074, 28 pages
We obtain expressions for second kind integrals on non-hyperelliptic $(n,s)$-curves. Such a curve possesses a Weierstrass point at infinity which is a branch point where all sheets of the curve come together. The infinity serves as the basepoint for
Externí odkaz:
http://arxiv.org/abs/1709.10167
Autor:
Bernatska, Julia, Leykin, Dmitry
Publikováno v:
Glasgow Mathematical Journal (2018)
We obtain explicit expressions for genus 2 degenerate sigma-function in terms of genus $1$ sigma-function and elementary functions as solutions of a system of linear PDEs satisfied by the sigma-function. By way of application we derive a solution for
Externí odkaz:
http://arxiv.org/abs/1509.01490
Publikováno v:
Social Indicators Research, 2018 Jan 01. 135(1), 333-356.
Externí odkaz:
https://www.jstor.org/stable/48715515
Publikováno v:
In International Journal of Disaster Risk Reduction October 2018 31:393-402
Autor:
Buchstaber, Victor, Leykin, Dmitry
We construct an explicit form of the addition law for hyperelliptic Abelian vector functions $\wp$ and $\wp'$. The functions $\wp$ and $\wp'$ form a basis in the field of hyperelliptic Abelian functions, i.e., any function from the field can be expre
Externí odkaz:
http://arxiv.org/abs/math-ph/0409033
Publikováno v:
In Personality and Individual Differences 1 August 2017 114:160-166
Publikováno v:
In Midwifery July 2017 50:1-8