Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Lewis, Thomas M."'
Autor:
Lewis, Thomas M., Salinas, Fabian
In this paper, we present a new method for determining the optimal pebbling number of a complete binary tree. This method reveals a curious connection between the optimal pebbling numbers of complete binary trees and the Conolly-Fox sequence, a type
Externí odkaz:
http://arxiv.org/abs/2109.07328
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lewis, Thomas M.
The Hamiltonian number of a connected graph is the minimum of the lengths of the closed, spanning walks in the graph. In 1968, Grinberg published a necessary condition for the existence of a Hamiltonian cycle in a planar graph, formulated in terms of
Externí odkaz:
http://arxiv.org/abs/1508.06892
Autor:
Lewis Thomas M.
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 39, Iss 1, Pp 171-181 (2019)
The Hamiltonian number of a connected graph is the minimum of the lengths of the closed spanning walks in the graph. In 1968, Grinberg published a necessary condition for the existence of a Hamiltonian cycle in a plane graph, formulated in terms of t
Externí odkaz:
https://doaj.org/article/f58a25e4ec45408cbf9568325f4b293b
Autor:
Khoshnevisan, Davar, Lewis, Thomas M.
Publikováno v:
Journal of Applied Probability, 2003 Dec 01. 40(4), 926-945.
Externí odkaz:
https://www.jstor.org/stable/3216051
Publikováno v:
In Discrete Applied Mathematics 20 April 2017 221:46-53
Autor:
Khoshnevisan, Davar, Lewis, Thomas M.
Publikováno v:
The Annals of Applied Probability, 1999 Aug 01. 9(3), 629-667.
Externí odkaz:
https://www.jstor.org/stable/2667276
Publikováno v:
The Annals of Probability, 1996 Apr 01. 24(2), 761-787.
Externí odkaz:
https://www.jstor.org/stable/2244948
Publikováno v:
ETSU Faculty Works.
Let G=(V,E) be a graph with vertex set V and edge set E. A vertex v∈V ve-dominates every edge incident to it as well as every edge adjacent to these incident edges. The vertex–edge degree of a vertex v is the number of edges ve-dominated by v. Si
Externí odkaz:
https://dc.etsu.edu/etsu-works/10684
Publikováno v:
ETSU Faculty Works.
For a graph G=(V,E), we consider placing a variable number of pebbles on the vertices of V. A pebbling move consists of deleting two pebbles from a vertex u∈V and placing one pebble on a vertex v adjacent to u. We seek an initial placement of a min
Externí odkaz:
https://dc.etsu.edu/etsu-works/10645