Zobrazeno 1 - 10
of 308
pro vyhledávání: '"Lewis, Adam P."'
Autor:
Ganahl, Martin, Beall, Jackson, Hauru, Markus, Lewis, Adam G. M., Yoo, Jae Hyeon, Zou, Yijian, Vidal, Guifre
Google's Tensor Processing Units (TPUs) are integrated circuits specifically built to accelerate and scale up machine learning workloads. They can perform fast distributed matrix multiplications and therefore be repurposed for other computationally i
Externí odkaz:
http://arxiv.org/abs/2204.05693
Autor:
Shillito, Ross, Petrescu, Alexandru, Cohen, Joachim, Beall, Jackson, Hauru, Markus, Ganahl, Martin, Lewis, Adam G. M., Vidal, Guifre, Blais, Alexandre
Qubit measurement and control in circuit QED rely on microwave drives, with higher drive amplitudes ideally leading to faster processes. However, degradation in qubit coherence time and readout fidelity has been observed even under moderate drive amp
Externí odkaz:
http://arxiv.org/abs/2203.11235
Autor:
Pederson, Ryan, Kozlowski, John, Song, Ruyi, Beall, Jackson, Ganahl, Martin, Hauru, Markus, Lewis, Adam G. M., Yao, Yi, Mallick, Shrestha Basu, Blum, Volker, Vidal, Guifre
We demonstrate the use of Google's cloud-based Tensor Processing Units (TPUs) to accelerate and scale up conventional (cubic-scaling) density functional theory (DFT) calculations. Utilizing 512 TPU cores, we accomplish the largest such DFT computatio
Externí odkaz:
http://arxiv.org/abs/2202.01255
Autor:
Lewis, Adam G. M., Beall, Jackson, Ganahl, Martin, Hauru, Markus, Mallick, Shrestha Basu, Vidal, Guifre
We have repurposed Google Tensor Processing Units (TPUs), application-specific chips developed for machine learning, into large-scale dense linear algebra supercomputers. The TPUs' fast inter-core interconnects (ICI)s, physically two-dimensional netw
Externí odkaz:
http://arxiv.org/abs/2112.09017
Tensor Processing Units (TPUs) were developed by Google exclusively to support large-scale machine learning tasks. TPUs can, however, also be used to accelerate and scale up other computationally demanding tasks. In this paper we repurpose TPUs for t
Externí odkaz:
http://arxiv.org/abs/2111.10466
Autor:
Morningstar, Alan, Hauru, Markus, Beall, Jackson, Ganahl, Martin, Lewis, Adam G. M., Khemani, Vedika, Vidal, Guifre
Publikováno v:
PRX Quantum 3, 020331 (2022)
Tensor Processing Units (TPUs) are specialized hardware accelerators developed by Google to support large-scale machine-learning tasks, but they can also be leveraged to accelerate and scale other linear-algebra-intensive computations. In this paper
Externí odkaz:
http://arxiv.org/abs/2111.08044
Autor:
Lewis, Adam M., Scudo, Petra F.
Progress in the development of techniques for the construction of multiuser quantum communications networks is reviewed in light of the plans for an EU quantum communications infrastructure (EU QCI). Quantum key distribution networks may be classifie
Externí odkaz:
http://arxiv.org/abs/2110.06762
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hardy, Lucien, Lewis, Adam G. M.
We describe how one may go about performing quantum computation with arbitrary "quantum stuff", as long as it has some basic physical properties. Imagine a long strip of stuff, equipped with regularly spaced wires to provide input settings and to rea
Externí odkaz:
http://arxiv.org/abs/1911.13282