Zobrazeno 1 - 10
of 353 112
pro vyhledávání: '"Levy BE"'
Autor:
Xu, Hu, Huang, Po-Yao, Tan, Xiaoqing Ellen, Yeh, Ching-Feng, Kahn, Jacob, Jou, Christine, Ghosh, Gargi, Levy, Omer, Zettlemoyer, Luke, Yih, Wen-tau, Li, Shang-Wen, Xie, Saining, Feichtenhofer, Christoph
This paper focuses on creating synthetic data to improve the quality of image captions. Existing works typically have two shortcomings. First, they caption images from scratch, ignoring existing alt-text metadata, and second, lack transparency if the
Externí odkaz:
http://arxiv.org/abs/2410.17251
Autor:
Aalbers, J., Akerib, D. S., Musalhi, A. K. Al, Alder, F., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Baker, A., Balashov, S., Bang, J., Bargemann, J. W., Barillier, E. E., Bauer, D., Beattie, K., Benson, T., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Bishop, E., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Buuck, M., Carmona-Benitez, M. C., Carter, M., Chawla, A., Chen, H., Cherwinka, J. J., Chin, Y. T., Chott, N. I., Converse, M. V., Coronel, R., Cottle, A., Cox, G., Curran, D., Dahl, C. E., Darlington, I., Dave, S., David, A., Delgaudio, J., Dey, S., de Viveiros, L., Di Felice, L., Ding, C., Dobson, J. E. Y., Druszkiewicz, E., Dubey, S., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fieldhouse, N., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T. M. A., Gaitskell, R. J., Geffre, A., Genovesi, J., Ghag, C., Ghosh, A., Gibbons, R., Gokhale, S., Green, J., van der Grinten, M. G. D., Haiston, J. J., Hall, C. R., Hall, T. J., Han, S., Hartigan-O'Connor, E., Haselschwardt, S. J., Hernandez, M. A., Hertel, S. A., Heuermann, G., Homenides, G. J., Horn, M., Huang, D. Q., Hunt, D., Jacquet, E., James, R. S., Johnson, J., Kaboth, A. C., Kamaha, A. C., K., Meghna K., Khaitan, D., Khazov, A., Khurana, I., Kim, J., Kim, Y. D., Kingston, J., Kirk, R., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Kudryavtsev, V. A., Lawes, C., Leonard, D. S., Lesko, K. T., Levy, C., Lin, J., Lindote, A., Lippincott, W. H., Lopes, M. I., Lorenzon, W., Lu, C., Luitz, S., Majewski, P. A., Manalaysay, A., Mannino, R. L., Maupin, C., McCarthy, M. E., McDowell, G., McKinsey, D. N., McLaughlin, J., McLaughlin, J. B., McMonigle, R., Mizrachi, E., Monte, A., Monzani, M. E., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naylor, A., Nelson, H. N., Neves, F., Nguyen, A., O'Brien, C. L., Olcina, I., Oliver-Mallory, K. C., Orpwood, J., Oyulmaz, K. Y, Palladino, K. J., Palmer, J., Pannifer, N. J., Parveen, N., Patton, S. J., Penning, B., Pereira, G., Perry, E., Pershing, T., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Ritchey, E., Riyat, H. S., Rosero, R., Rushton, T., Rynders, D., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Sehr, G., Shafer, B., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Siniscalco, J., Smith, R., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Szydagis, M., Tiedt, D. R., Timalsina, M., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Usón, A., Vacheret, A., Vaitkus, A. C., Valentino, O., Velan, V., Wang, A., Wang, J. J., Wang, Y., Watson, J. R., Weeldreyer, L., Whitis, T. J., Wild, K., Williams, M., Wisniewski, W. J., Wolf, L., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xu, J., Xu, Y., Yeh, M., Yeum, D., Zha, W., Zweig, E. A.
We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from
Externí odkaz:
http://arxiv.org/abs/2410.17036
Autor:
Lévy, Hugo, Uzan, Jean-Philippe
In any scalar-tensor theory of gravity exhibiting a screening mechanism, the fifth force mediated by the scalar field is dynamically suppressed at sub-Solar system scales, allowing it to pass existing tests of gravity. As a result, a major research e
Externí odkaz:
http://arxiv.org/abs/2410.17292
Scaling inference compute in large language models (LLMs) through repeated sampling consistently increases the coverage (fraction of problems solved) as the number of samples increases. We conjecture that this observed improvement is partially due to
Externí odkaz:
http://arxiv.org/abs/2410.15466
Precise action localization in untrimmed video is vital for fields such as professional sports and minimally invasive surgery, where the delineation of particular motions in recordings can dramatically enhance analysis. But in many cases, large scale
Externí odkaz:
http://arxiv.org/abs/2410.14340
With the increasing adoption of large language models (LLMs) in education, concerns about inherent biases in these models have gained prominence. We evaluate LLMs for bias in the personalized educational setting, specifically focusing on the models'
Externí odkaz:
http://arxiv.org/abs/2410.14012
We develop a new longitudinal count data regression model that accounts for zero-inflation and spatio-temporal correlation across responses. This project is motivated by an analysis of Iowa Fluoride Study (IFS) data, a longitudinal cohort study with
Externí odkaz:
http://arxiv.org/abs/2410.13949
Autor:
Levy, Amit Arnold, Geva, Mor
Large language models (LLMs) frequently make errors when handling even simple numerical problems, such as comparing two small numbers. A natural hypothesis is that these errors stem from how LLMs represent numbers, and specifically, whether their rep
Externí odkaz:
http://arxiv.org/abs/2410.11781
Autor:
Galatzer-Levy, Isaac R., McGiffin, Jed, Munday, David, Liu, Xin, Karmon, Danny, Labzovsky, Ilia, Moroshko, Rivka, Zait, Amir, McDuff, Daniel
Generative AI's rapid advancement sparks interest in its cognitive abilities, especially given its capacity for tasks like language understanding and code generation. This study explores how several recent GenAI models perform on the Clock Drawing Te
Externí odkaz:
http://arxiv.org/abs/2410.11756
Empowerment has the potential to help agents learn large skillsets, but is not yet a scalable solution for training general-purpose agents. Recent empowerment methods learn diverse skillsets by maximizing the mutual information between skills and sta
Externí odkaz:
http://arxiv.org/abs/2410.11155