Zobrazeno 1 - 10
of 3 737
pro vyhledávání: '"Levie"'
Autor:
John Whitaker, Ella Togun, Levie Gondwe, Donaria Zgambo, Abena S. Amoah, Albert Dube, Rory Rickard, Andrew JM Leather, Justine Davies
Publikováno v:
BMC Health Services Research, Vol 24, Iss 1, Pp 1-17 (2024)
Abstract Introduction The global burden of injury is huge, falling disproportionately on poorer populations. The benefits of qualitative research in injury care are recognised and its application is growing. We used a novel application of focus group
Externí odkaz:
https://doaj.org/article/84b9633b63224e6db969bb0958be2077
Publikováno v:
Clinical Ophthalmology, Vol Volume 15, Pp 4809-4816 (2021)
Ella H Leung,1 Sahana Sharma,2 Ana Levie-Sprick,1 Gregory D Lee,1 Hyung Cho,1 Krishna Mukkamala1 1Georgia Retina, Atlanta, GA, USA; 2Vanderbilt University, Nashville, TN, USACorrespondence: Ella H LeungGeorgia Retina, 833 Campbell Hill St NW, Suite 3
Externí odkaz:
https://doaj.org/article/89bd42a6671e490da81e806e9cab4cd2
We analyze the universality and generalization of graph neural networks (GNNs) on attributed graphs, i.e., with node attributes. To this end, we propose pseudometrics over the space of all attributed graphs that describe the fine-grained expressivity
Externí odkaz:
http://arxiv.org/abs/2411.05464
Autor:
Levie T. Karssen, Junilla K. Larsen, William J. Burk, Stef P. J. Kremers, Roel C. J. Hermans, Emilie L. M. Ruiter, Jacqueline M. Vink, Carolina de Weerth
Publikováno v:
Frontiers in Public Health, Vol 10 (2022)
BackgroundAlthough energy balance-related parenting practices are regarded critical components in the prevention of childhood obesity, most programs targeting parenting practices with respect to a wide range of energy balance-related behaviors were n
Externí odkaz:
https://doaj.org/article/f12931e9d7db424d8de693b314d9d7fa
Publikováno v:
Frontiers in Public Health, Vol 10 (2022)
Externí odkaz:
https://doaj.org/article/ba7f259e9ee846c7890e7f2ad7a2aeba
Autor:
Finn Rasmussen, Hein Raat, Cristina Palacios, Barry J Taylor, Lisa Askie, Alison Hayes, Karen Campbell, Wendy Smith, Luke Wolfenden, Sharleen O’Reilly, Eva Corpeleijn, Maria Bryant, Chris Rissel, Denise O’Connor, Paul Chadwick, Jessica Thomson, Anna Lene Seidler, Kylie E Hunter, Ian Paul, Rachael W Taylor, Angie Barba, Kristy Robledo, Ken Ong, Carolina González Acero, Kylie D Hesketh, Rebecca K Golley, David Espinoza, Sarah Taki, Rachael Taylor, Louise A Baur, Li Ming Wen, Seema Mihrshahi, Emily Oken, Barry Taylor, Ian Marschner, Junilla K Larsen, Kylie Hesketh, Rajalakshmi Lakshman, Amanda L Thompson, Sharleen L O'Reilly, Charles Wood, Alison J Hayes, Kaumudi Joshipura, Lynne Daniels, Alison Karasz, Rebecca Golley, Kaumudi J Joshipura, Nina Cecilie Øverby, Brittany J Johnson, Mason Aberoumand, Sol Libesman, Kristy P Robledo, Charles T Wood, Lukas P Staub, Michelle Sue-See, Ian C Marschner, Jessica L Thomson, Vera Verbestel, Cathleen Odar Stough, Sarah-Jeanne Salvy, Levie T Karssen, Finn E Rasmussen, Mary Jo Messito, Rachel S Gross, Ian M Paul, Ana M Linares, Heather M Wasser, Claudio Maffeis, Ata Ghaderi, Jinan C Banna, Maribel Campos Rivera, Ana B Pérez-Expósito, Jennifer S Savage, Margrethe Røed, Michael Goran, Kayla de la Haye, Stephanie Anzman-Frasca, Kylie Hunter, Brittany Johnson, Louise Baur, Lukas Staub, Shonna Yin, Lee Sanders, Amanda Thompson, Ana Maria Linares, Ana Perez Exposito, Christine Helle, Eliana Perrin, Heather Wasser, Jennifer Savage, Jinan Banna, Junilla Larsen, Kayla dela Haye, Levie Karssen, Nina Øverby, Rachel Gross, Russell Rothman
Publikováno v:
BMJ Open, Vol 12, Iss 1 (2022)
Externí odkaz:
https://doaj.org/article/d4dc2f7a97504b29ba0c2894096f2178
Autor:
Finn Rasmussen, Hein Raat, Cristina Palacios, Barry J Taylor, Lisa Askie, Alison Hayes, Cindy-Lee Dennis, Karen Campbell, Wendy Smith, Luke Wolfenden, Sharleen O’Reilly, Eva Corpeleijn, Maria Bryant, Chris Rissel, Denise O’Connor, Paul Chadwick, Jessica Thomson, Anna Lene Seidler, Kylie E Hunter, Rachael W Taylor, Angie Barba, Kristy Robledo, Ken Ong, Carolina González Acero, Ana Pérez-Expósito, Kylie D Hesketh, Rebecca K Golley, David Espinoza, Ken K Ong, Sarah Taki, Rachael Taylor, Louise A Baur, Li Ming Wen, Seema Mihrshahi, Emily Oken, Barry Taylor, Ian Marschner, Junilla K Larsen, Kylie Hesketh, Rajalakshmi Lakshman, Amanda L Thompson, Sharleen L O'Reilly, Jonathan Williams, Charles Wood, Alison J Hayes, Kaumudi Joshipura, Hongping Xia, Lynne Daniels, Rebecca Byrne, Alison Karasz, Rebecca Golley, Kaumudi J Joshipura, Angela Webster, Nina Cecilie Øverby, Brittany J Johnson, Mason Aberoumand, Sol Libesman, Kristy P Robledo, Charles T Wood, Lukas P Staub, Michelle Sue-See, Ian C Marschner, Jessica L Thomson, Vera Verbestel, Sarah-Jeanne Salvy, Levie T Karssen, Finn E Rasmussen, Mary Jo Messito, Rachel S Gross, Ian M Paul, Heather M Wasser, Claudio Maffeis, Ata Ghaderi, Jinan C Banna, Maribel Campos Rivera, Ana B Pérez-Expósito, Jennifer S Savage, Margrethe Røed, Michael Goran, Kayla de la Haye, Stephanie Anzman-Frasca, Kylie Hunter, Brittany Johnson, Louise Baur, Lukas Staub, Shonna Yin, Lee Sanders, Amanda Thompson, Ana Maria Linares, Cathleen Odar Stough, Christine Helle, Eliana Perrin, Heather Wasser, Jinan Banna, Kayla dela Haye, Levie Karssen, Nina Øverby, Rachel Gross, Russell Rothman, Wendy A Smith, Alexander Fiks, Deborah Jacobvitz, Jennifer Savage Williams, Márcia Regina Vitolo, Elizabeth Widen
Publikováno v:
BMJ Open, Vol 12, Iss 1 (2022)
Externí odkaz:
https://doaj.org/article/091bcf02122241f490982c3cf8dab1fd
Autor:
Zilberg, Daniel, Levie, Ron
We propose PieClam (Prior Inclusive Exclusive Cluster Affiliation Model): a probabilistic graph model for representing any graph as overlapping generalized communities. Our method can be interpreted as a graph autoencoder: nodes are embedded into a c
Externí odkaz:
http://arxiv.org/abs/2409.11618
Equivariant machine learning is an approach for designing deep learning models that respect the symmetries of the problem, with the aim of reducing model complexity and improving generalization. In this paper, we focus on an extension of shift equiva
Externí odkaz:
http://arxiv.org/abs/2406.01249
Message Passing Neural Networks (MPNNs) are a staple of graph machine learning. MPNNs iteratively update each node's representation in an input graph by aggregating messages from the node's neighbors, which necessitates a memory complexity of the ord
Externí odkaz:
http://arxiv.org/abs/2405.20724