Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Levi Adriano"'
Publikováno v:
manuscripta mathematica. 165:35-59
In this paper, we prove that if a metric measure space satisfies the volume doubling condition and the Caffarelli–Kohn–Nirenberg inequality with the same exponent $$n(n\ge 2)$$ , then it has exactly n-dimensional volume growth. As application, we
Publikováno v:
Pesquisas de vanguarda em matemática e suas aplicações
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d999b6a0ba03c67fb907a134391cb185
https://doi.org/10.22533/at.ed.4022128098
https://doi.org/10.22533/at.ed.4022128098
Publikováno v:
Results in Mathematics. 76
We consider the pseudo-Euclidean space $$(\mathbb {R}^n,g)$$ , $$n \ge 3$$ , with coordinates $$x=\left( x_1,...,x_n\right) $$ and metric components $$g_{ij} = \delta _{ij}\epsilon _i$$ , $$1\le i, j\le n$$ , where $$\varepsilon _i=\pm 1$$ , with at
Publikováno v:
Differential Geometry and its Applications. 82:101884
Publikováno v:
Journal of Geometry and Physics. 176:104510
In this paper, we study gradient Einstein-type structure immersed into a Riemannian warped product manifold. We obtain some triviality results for the potential function and smooth map $u$. We investigate conditions for a gradient Einstein-type struc
Publikováno v:
Monatshefte für Mathematik. 185:207-230
In this paper, we investigate the eigenvalue problem of the Markov diffusion operator $$\mathfrak {L}$$ and $$\mathfrak {L}^2$$ , respectively. Firstly, we obtain some general inequalities for eigenvalues of the operator $$\mathfrak {L}$$ and $$\math
Publikováno v:
Monatshefte für Mathematik. 181:797-820
Let \(\Omega \) be a bounded domain in a n-dimensional Euclidean space \(\mathbb {R}^{n}\). We study eigenvalues of an eigenvalue problem of a system of elliptic equations of the drifting Laplacian $$\begin{aligned} \left\{ \begin{array}{ll} \mathbb
The purpose of this article is to study gradient Yamabe soliton on warped product manifolds. First, we prove triviality results in the case of noncompact base with limited warping function, and for compact base. In order to provide nontrivial example
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::522c4015f98e8053848a11ffed2e44ea
http://arxiv.org/abs/1811.09468
http://arxiv.org/abs/1811.09468
Publikováno v:
Annals of Global Analysis and Geometry. 47:373-397
In this paper, we study eigenvalues of polydrifting Laplacian on compact Riemannian manifolds with boundary (possibly empty). Here, we prove a universal inequality for the eigenvalues of the polydrifting operator on compact domains in an Euclidean sp
Publikováno v:
Journal of Mathematical Analysis and Applications. 421:893-904
In the Euclidean space ( R n , g ) , with n ≥ 3 , g i j = δ i j , we consider a diagonal ( 0 , 2 ) -tensor T = ∑ i f i ( x ) d x i 2 . We obtain necessary and sufficient conditions for the existence of a metric g ¯ , conformal to g, such that R