Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Lev Birbrair"'
Autor:
Lev Birbrair, Andrei Gabrielov
We consider a special case of the outer bi-Lipschitz classification of real semialgebraic (or, more general, definable in a polynomially bounded o-minimal structure) surface germs, obtained as a union of two normally embedded Hölder triangles. We de
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cef5c743ace5fe95d512188fd75dec93
Autor:
Lev Birbrair
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
Publicacions Matemàtiques; Vol. 42, Núm. 2 (1998); p. 383-410
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
instname
Publicacions Matemàtiques; Vol. 42, Núm. 2 (1998); p. 383-410
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
In the paper we construct some stratifications of the space of monic polynomials in real and complex cases. These stratifications depend on properties of roots of the polynomials on some given semialgebraic subset of $\Bbb R$ or $\Bbb C$. We prove di
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4886972fba9ca1e4327cb5cdd37ad5e3
http://hdl.handle.net/2072/381771
http://hdl.handle.net/2072/381771
Autor:
Lev Birbrair, Andrei Gabrielov
Publikováno v:
Introduction to Lipschitz Geometry of Singularities ISBN: 9783030618063
A link of an isolated singularity of a two-dimensional semialgebraic surface in \({\mathbb R}^4\) is a knot (or a link) in S3. Thus the ambient Lipschitz classification of surface singularities in \({\mathbb R}^4\) can be interpreted as a metric refi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a7b8aec43c428d19c21e8c978052efe5
https://doi.org/10.1007/978-3-030-61807-0_6
https://doi.org/10.1007/978-3-030-61807-0_6
Let X be a closed semialgebraic set of dimension k. If n≥2k+1, then there is a bi-Lipschitz and semialgebraic embedding of X into Rn. Moreover, if n≥2k+2, then this embedding is unique (up to a bi-Lipschitz and semialgebraic homeomorphism of Rn).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::24dc41fac27dd11afac6845614540174
Publikováno v:
Mathematische Nachrichten. 291:2381-2387
Let Pk(n,p) be the set of all real polynomial map germs f=(f1,⋯,fp):(Rn,0)→(Rp,0) with degree of f1,⋯,fp less than or equal to k∈N. The main result of this paper shows that the set of equivalence classes of Pk(n,p), with respect to multi‐K
Publikováno v:
Journal of Number Theory. 174:68-77
Text Let A = { a 1 , … , a k } be a finite multiset of positive real numbers. Consider the sequence of all positive integers multiples of all a i 's, and note the multiplicity of each term in this sequence. This sequence of multiplicities is called
Publikováno v:
ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE. :81-92
In this paper we study Lipschitz contact equivalence of continuous function germs in the plane definable in a polynomially bounded o-minimal structure, such as semialgebraic and subanalytic functions. We partition the germ of the plane at the origin
Autor:
Lev Birbrair, Maciej P. Denkowski
Publikováno v:
Journal of Geometric Analysis
This paper is devoted to the study of the medial axes of sets definable in polynomially bounded o-minimal structures, i.e. the sets of points with more than one closest point with respect to the Euclidean distance. Our point of view is that of singul
Publikováno v:
Hokkaido Math. J. 47, no. 3 (2018), 545-556
Let $P^{k}(n,p \times q)$ be the set of all pairs of real polynomial map germs $(f, g) : (\mathbb{R}^{n},0) \rightarrow (\mathbb{R}^{p} \times \mathbb{R}^{q} ,0)$ with degree of $ f_1 , \dots, f_p ,$ $g_1 ,\dots, g_q$ less than or equal to $k \in \N$
Publikováno v:
J. Math. Soc. Japan 70, no. 3 (2018), 989-1006
The main result of this note is that two blow-analytically equivalent real analytic plane function germs are sub-analytically bi-Lipschitz contact equivalent.