Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Lev Aizenberg"'
Publikováno v:
Mathematical Inequalities & Applications. :553-564
Autor:
Lev Aizenberg
Publikováno v:
Analysis and Mathematical Physics. 4:13-21
The problem for separation of singularities for holomorphic functions is resolved for classes \(E^p\), \(1
Publikováno v:
Complex Analysis and Operator Theory. 8:1341-1366
Let $$\Omega \subset \mathbb {C}^n $$ be a bounded, strictly convex domain with $${{\mathcal {C}}}^3$$ boundary and $$\widetilde{\Omega }$$ be its dual complement. We prove that $$(H^p(\Omega ))^{\prime }=H^q(\widetilde{\Omega })$$ , where $$p>1$$ an
Autor:
Lev Aizenberg, Alekos Vidras
Publikováno v:
Complex Analysis and Dynamical Systems V. :1-24
Autor:
Dmitrii Evgen'evich Tamarkin, Alexandr Vladimirovich Karabegov, Nikolai Tarkhanov, Boris Tsygan, Georgy Leonidovich Alfimov, A A Komech, Mihail Vladimirovich Karasev, Vladislav Vasilievich Pukhnachov, Victor Pavlovich Maslov, Lev Aizenberg, Marko Iosifovich Vishik, Th. Th. Voronov, Mikhail Semenovich Agranovich, Mikhail Shubin
Publikováno v:
Russian Mathematical Surveys. 67:167-174
Autor:
Lev Aizenberg
Publikováno v:
Analysis and Mathematical Physics. 2:69-78
The following problems are discussed in this work. 1. Asymptotics of the majorant function in the Reinhardt domains in \({\mathbb C^n}\). 2. The Bohr and Rogosinski radii for Hardy classes of functions holomorphic in the disk. 3. Neither Bohr nor Rog
Autor:
Georgy Leonidovich Alfimov, A A Komech, Dmitrii Evgen'evich Tamarkin, Marko Iosifovich Vishik, Mikhail Semenovich Agranovich, Alexandr Vladimirovich Karabegov, Boris Tsygan, Nikolai Tarkhanov, Lev Aizenberg, Mikhail Shubin, Mihail Vladimirovich Karasev, Vladislav Vasilievich Pukhnachov, Victor Pavlovich Maslov, Theodore Voronov, Фeдор Фeдорович Воронов
Publikováno v:
Uspekhi Matematicheskikh Nauk. 67:169-176
Autor:
Lev Aizenberg, Nikolai Tarkhanov
Publikováno v:
Complex Analysis and Dynamical Systems IV. :1-13
Publikováno v:
Computational Methods and Function Theory. 9:65-74
We prove that the abscissas of Bohr and Rogosinski for ordinary Dirichlet series, mapping the right half-plane into the bounded convex domain $G\subset \mathbb{C} $ are independent of the domain $G$. Furthermore, we obtain new estimates about these a
Autor:
Lev Aizenberg, Nikolai Tarkhanov
Publikováno v:
Complex Analysis and Dynamical Systems III. :1-22