Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Lesgourgues, Thomas"'
In his study of graph codes, Alon introduced the concept of the odd-Ramsey number of a family of graphs $\mathcal{H}$ in $K_n$, defined as the minimum number of colours needed to colour the edges of $K_n$ so that every copy of a graph $H\in \mathcal{
Externí odkaz:
http://arxiv.org/abs/2410.05887
Autor:
Campbell, Rutger, Gollin, J. Pascal, Hendrey, Kevin, Lesgourgues, Thomas, Mohar, Bojan, Tamitegama, Youri, Tan, Jane, Wood, David R.
A colouring of a graph $G$ has clustering $k$ if the maximum number of vertices in a monochromatic component equals $k$. Motivated by recent results showing that many natural graph classes are subgraphs of the strong product of a graph with bounded t
Externí odkaz:
http://arxiv.org/abs/2407.21360
A graph $G$ is $q$-Ramsey for a $q$-tuple of graphs $(H_1,\ldots,H_q)$ if for every $q$-coloring of the edges of $G$ there exists a monochromatic copy of $H_i$ in color $i$ for some $i\in[q]$. Over the last few decades, researchers have investigated
Externí odkaz:
http://arxiv.org/abs/2211.15840
Autor:
Bishnoi, Anurag, Lesgourgues, Thomas
We prove that $s_r(K_{k+1}) = O(k^3 r^3 \log^3 k)$, where $s_r(K_k)$ is the Ramsey parameter introduced by Burr, Erd\H{o}s and Lov\'{a}sz in 1976, which is defined as the smallest minimum degree of a graph $G$ such that any $r$-colouring of the edges
Externí odkaz:
http://arxiv.org/abs/2209.05147
Publikováno v:
In Journal of Combinatorial Theory, Series B November 2024 169:63-95
Autor:
Bishnoi, Anurag, Boyadzhiyska, Simona, Clemens, Dennis, Gupta, Pranshu, Lesgourgues, Thomas, Liebenau, Anita
A graph $G$ is said to be $q$-Ramsey for a $q$-tuple of graphs $(H_1,\ldots,H_q)$, denoted by $G\to_q(H_1,\ldots,H_q)$, if every $q$-edge-coloring of $G$ contains a monochromatic copy of $H_i$ in color $i,$ for some $i\in[q]$. Let $s_q(H_1,\ldots,H_q
Externí odkaz:
http://arxiv.org/abs/2109.02877
Publikováno v:
Bull. London Math. Soc., 54 (2022): 1827-1838
We prove that $s_r(K_k) = O(k^5 r^{5/2})$, where $s_r(K_k)$ is the Ramsey parameter introduced by Burr, Erd\H{o}s and Lov\'{a}sz in 1976, which is defined as the smallest minimum degree of a graph $G$ such that any $r$-colouring of the edges of $G$ c
Externí odkaz:
http://arxiv.org/abs/2008.02474
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lesgourgues, Thomas
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
For a given random graph, a connected component that contains a finite fraction of the entire graph's vertices is called giant. The study of these components started with the \ER model, where it has been proven that removing the (unique) giant compon
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::095ec991b53bf27853cc096e89b9e894
https://hdl.handle.net/2117/166025
https://hdl.handle.net/2117/166025