Zobrazeno 1 - 10
of 2 404
pro vyhledávání: '"Leray spectral sequence"'
Autor:
Patel, Amit, Sauriol, Dustin
The Leray spectral sequence of a map $f$ computes the homology of the domain of $f$ from the fibers of $f$. In this expository paper, we relate in full detail the Leray spectral sequence associated to a simplicial map $f$ to the Leray cosheaves of $f
Externí odkaz:
http://arxiv.org/abs/1912.08288
In this work, we build a spectral sequence in motivic homotopy that is analogous to both the Serre spectral sequence in algebraic topology and the Leray spectral sequence in algebraic geometry. Here, we focus on laying the foundations necessary to bu
Externí odkaz:
http://arxiv.org/abs/1812.09574
Autor:
Weber, Andrzej
Let Z be an arrangement of submanifolds in a complex compact algebraic manifold X. We allow some kind of singular intersections. We consider the Leray spectral sequence of the embedding of the U=X-Z into X and formulate a condition sufficient for deg
Externí odkaz:
http://arxiv.org/abs/1505.01365
Autor:
Beggs, Edwin, Masmali, Ibtisam
This paper describes the Leray spectral sequence associated to a differential fibration. The differential fibration is described by base and total differential graded algebras. The cohomology used is noncommutative differential sheaf cohomology. For
Externí odkaz:
http://arxiv.org/abs/1108.5055
Autor:
Arapura, Donu
Our goal is to prove that the Leray spectral sequence associated to a map of algebraic varieties is motivic in the following sense: If the singular cohomology groups of the category of quasiprojective varieties defined over a subfield of C can be can
Externí odkaz:
http://arxiv.org/abs/math/0301140
Autor:
Dai, Xianzhe
Publikováno v:
Journal of the American Mathematical Society, 1991 Apr 01. 4(2), 265-321.
Externí odkaz:
https://www.jstor.org/stable/2939276
Autor:
Peters, C. A. M., Steenbrink, J. H. M.
Publikováno v:
Moscow Mathematical Journal Vol. 3 Number 3, July-September 2003, Pages 1085-1095
We prove that the Leray spectral sequence in rational cohomology for the quotient map $U_{n,d} \to U_{n,d}/G$ where $U_{n,d}$ is the affine variety of equations for smooth hypersurfaces of degree $d$ in $\PP^n(\C)$ and $G$ is the general linear group
Externí odkaz:
http://arxiv.org/abs/math/0112093
Autor:
Cibils, Claude, Redondo, Maria Julia
We provide a Cartan-Leray type spectral sequence for the Hochschild-Mitchell (co)homology of a Galois covering of linear categories. We infer results relating the Galois group and Hochschild cohomology in degree one.
Externí odkaz:
http://arxiv.org/abs/math/0305218
Kniha
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Motivic Homotopy Theory and Refined Enumerative Geometry
Motivic Homotopy Theory and Refined Enumerative Geometry, 745, pp.21-68, 2020, 978-1-4704-4898-1. ⟨10.1090/conm/745/15021⟩
Motivic homotopy theory and refined enumerative geometry (co-edited with Federico Binda, Marc Levine,and Oliver Röndigs)
Motivic Homotopy Theory and Refined Enumerative Geometry, Federico Binda, Marc Levine, Manh Toan, Oliver Röndigs, May 2018, Essen, Germany
Motivic Homotopy Theory and Refined Enumerative Geometry, 745, pp.21-68, 2020, 978-1-4704-4898-1. ⟨10.1090/conm/745/15021⟩
Motivic homotopy theory and refined enumerative geometry (co-edited with Federico Binda, Marc Levine,and Oliver Röndigs)
Motivic Homotopy Theory and Refined Enumerative Geometry, Federico Binda, Marc Levine, Manh Toan, Oliver Röndigs, May 2018, Essen, Germany
In this work, we build a spectral sequence in motivic homotopy that is analogous to both the Serre spectral sequence in algebraic topology and the Leray spectral sequence in algebraic geometry. Here, we focus on laying the foundations necessary to bu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::338be897fe8193583f46775fecedae73
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-03108523
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-03108523