Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Leppänen, Juho"'
Autor:
Leppänen, Juho
We adapt Stein's method to obtain Berry--Esseen type error bounds in the multivariate central limit theorem for non-stationary processes generated by time-dependent compositions of uniformly expanding dynamical systems. In a particular case of random
Externí odkaz:
http://arxiv.org/abs/2403.16349
Autor:
Leppänen, Juho
We consider a two-parameter family of maps $T_{\alpha, \beta}: [0,1] \to [0,1]$ with a neutral fixed point and a non-flat critical point. Building on a cone technique due to Baladi and Todd, we show that for a class of $L^q$ observables $\phi: [0,1]
Externí odkaz:
http://arxiv.org/abs/2306.02310
Autor:
Korepanov, Alexey, Leppänen, Juho
We study nonstationary intermittent dynamical systems, such as compositions of a (deterministic) sequence of Pomeau-Manneville maps. We prove two main results: sharp bounds on memory loss, including the "unexpected" faster rate for a large class of m
Externí odkaz:
http://arxiv.org/abs/2007.07616
Autor:
Leppänen, Juho, Stenlund, Mikko
We consider time-dependent dynamical systems arising as sequential compositions of self-maps of a probability space. We establish conditions under which the Birkhoff sums for multivariate observations, given a centering and a general normalizing sequ
Externí odkaz:
http://arxiv.org/abs/1906.03217
Autor:
Hella, Olli, Leppänen, Juho
We study dynamical systems arising as time-dependent compositions of Pomeau-Manneville-type intermittent maps. We establish central limit theorems for appropriately scaled and centered Birkhoff-like partial sums, with estimates on the rate of converg
Externí odkaz:
http://arxiv.org/abs/1811.11170
Autor:
Leppänen, Juho
This paper is about statistical properties of quasistatic dynamical systems. These are a class of non-stationary systems that model situations where the dynamics change very slowly over time due to external influence. We focus on the case where the t
Externí odkaz:
http://arxiv.org/abs/1710.11371
Autor:
Leppänen, Juho, Stenlund, Mikko
In this short note we consider the finite-dimensional distributions of sets of states generated by dispersing billiards with a random initial condition. We establish a functional correlation bound on the distance between the finite-dimensional distri
Externí odkaz:
http://arxiv.org/abs/1702.01461
Autor:
Leppänen, Juho
In the setting of intermittent Pomeau-Manneville maps with time dependent parameters, we show a functional correlation bound widely useful for the analysis of the statistical properties of the model. We give two applications of this result, by showin
Externí odkaz:
http://arxiv.org/abs/1702.00699
We present an adaptation of Stein's method of normal approximation to the study of both discrete- and continuous-time dynamical systems. We obtain new correlation-decay conditions on dynamical systems for a multivariate central limit theorem augmente
Externí odkaz:
http://arxiv.org/abs/1701.02966
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.