Zobrazeno 1 - 10
of 33 838
pro vyhledávání: '"Lepp&'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Papers on Anthropology. 2019, Vol. 28 Issue 1, p151-155. 5p.
Extant chemical evolution models underestimate the Galactic production of Sr, Y and Zr as well as the Solar System abundances of s-only isotopes with 90
Externí odkaz:
http://arxiv.org/abs/1501.00544
Publikováno v:
ZI Ziegelindustire International: Journal for the Brick & Tile, Structural Ceramics, Refractory & Clay Pipe Industries. 2023, Issue 3, p36-36. 2/3p.
Autor:
Lepp, Haley, Sarin, Parth
In this provocation, we discuss the English dominance of the AI research community, arguing that the requirement for English language publishing upholds and reinforces broader regimes of extraction in AI. While large language models and machine trans
Externí odkaz:
http://arxiv.org/abs/2408.14772
We examine the dynamics and stability of circumbinary particles orbiting around the Earth-Moon binary system. The moon formed close to the Earth (semi-major axis $a_{EM}\approx 3\, R_\oplus$) and expanded through tides to its current day semi-major a
Externí odkaz:
http://arxiv.org/abs/2407.09701
Autor:
Liang, Weixin, Zhang, Yaohui, Wu, Zhengxuan, Lepp, Haley, Ji, Wenlong, Zhao, Xuandong, Cao, Hancheng, Liu, Sheng, He, Siyu, Huang, Zhi, Yang, Diyi, Potts, Christopher, Manning, Christopher D, Zou, James Y.
Scientific publishing lays the foundation of science by disseminating research findings, fostering collaboration, encouraging reproducibility, and ensuring that scientific knowledge is accessible, verifiable, and built upon over time. Recently, there
Externí odkaz:
http://arxiv.org/abs/2404.01268
Publikováno v:
In Procedia Engineering 2015 124:317-329
Autor:
Liang, Weixin, Izzo, Zachary, Zhang, Yaohui, Lepp, Haley, Cao, Hancheng, Zhao, Xuandong, Chen, Lingjiao, Ye, Haotian, Liu, Sheng, Huang, Zhi, McFarland, Daniel A., Zou, James Y.
We present an approach for estimating the fraction of text in a large corpus which is likely to be substantially modified or produced by a large language model (LLM). Our maximum likelihood model leverages expert-written and AI-generated reference te
Externí odkaz:
http://arxiv.org/abs/2403.07183