Zobrazeno 1 - 10
of 148
pro vyhledávání: '"Leopold Flatto"'
Autor:
Michael Renardy, A. A. Jagers
Publikováno v:
SIAM Review. 32:302-304
Autor:
Bryant, Victor
Publikováno v:
The Mathematical Gazette, 1977 Mar 01. 61(415), 71-72.
Externí odkaz:
https://www.jstor.org/stable/3617460
Publikováno v:
SIAM Review; June 1990, Vol. 32 Issue: 2 p302-304, 3p
Autor:
Leopold Flatto
Publikováno v:
High Frequency. 2:169-174
Autor:
Victor Bryant
Publikováno v:
The Mathematical Gazette. 61:71-72
Autor:
Jeffrey C. Lagarias, Leopold Flatto
Publikováno v:
Nonlinearity. 13:1055-1071
The tent map tβ:[0,1]→[0,1] with parameter 1 < β≤2 is defined by This paper derives formulae for its dynamical zeta and lap-counting functions which exhibit the renormalization structure of such maps. It relates these functions to the centrally
Publikováno v:
Algorithmica. 22:448-476
Starting at time 0, unit-length intervals arrive and are placed on the positive real line by a unit-intensity Poisson process in two dimensions; the probability of an interval arriving in the time interval [t,t+\( \Delta \)t] with its left endpoint i
Autor:
Leopold Flatto, Jeffrey C. Lagarias
Publikováno v:
Ergodic Theory and Dynamical Systems. 17:369-403
Linear mod one transformations are those maps of the unit interval given by $f_{\beta,\alpha}(x)=\beta x+\alpha$ (mod 1), with $\beta>1$ and $0\le\alpha 2$, and this paper determines $N_{\beta,\alpha}$ in the remaining cases where $1
Autor:
Jeffrey C. Lagarias, Leopold Flatto
Publikováno v:
Ergodic Theory and Dynamical Systems. 17:123-146
Linear mod one transformations are those maps of the unit interval given by $f_{\beta,\alpha}(x)=\beta x+\alpha$ (mod 1), with $\beta>1$ and $0\le\alpha2$. Finally, we give the criterion that $N_{\beta,\alpha}=1$ if and only if for all $n\ge 1$ the m
Autor:
Leopold Flatto, Jeffrey C. Lagarias
Publikováno v:
Ergodic Theory and Dynamical Systems. 16:451-491
Linear mod one transformations are the maps of the unit interval given by fβα(x) = βx + α (mod 1), with β > 1 and 0 ≤ α < 1. The lap-counting function is the function where the lap number Ln essentially counts the number of monotonic pieces o