Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Leonid Golinskii"'
Publikováno v:
Journal of Spectral Theory
Journal of Spectral Theory, 2021, 11 (3), pp.1145-1178. ⟨10.4171/jst/368⟩
Journal of Spectral Theory, European Mathematical Society, 2021, 11 (3), pp.1145-1178. ⟨10.4171/jst/368⟩
Journal of Spectral Theory, 2021, 11 (3), pp.1145-1178. ⟨10.4171/jst/368⟩
Journal of Spectral Theory, European Mathematical Society, 2021, 11 (3), pp.1145-1178. ⟨10.4171/jst/368⟩
Combining the methods of Cuenin [2019] and Borichev-Golinskii-Kupin [2009, 2018], we obtain the so-called Lieb-Thirring inequalities for non-selfadjoint perturbations of an effective Hamiltonian for bilayer graphene.
22 pages; few typos correcte
22 pages; few typos correcte
Autor:
Leonid Golinskii
Publikováno v:
Journal d'Analyse Mathématique. 141:441-456
In 1996 A. Aleksandrov solved the isometric embedding problem for the model spaces KΘ with an arbitrary inner function Θ.We find all extreme points of this convex set of measures in the case when & is a finite Blaschke product, and obtain some part
Autor:
Leonid Golinskii
Two method for computation of the spectra of certain infinite graphs are suggested. The first one can be viewed as a reversed Gram--Schmidt orthogonalization procedure. It relies heavily on the spectral theory of Jacobi matrices. The second method is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1c94d855e1f5305fb2bd8a662013c635
http://arxiv.org/abs/2001.08596
http://arxiv.org/abs/2001.08596
Autor:
Leonid Golinskii
Publikováno v:
Operators and Matrices. :389-396
The goal of the paper is to apply the general operator theoretic construction known as the Schur complement for computation of the spectrum of certain infinite graphs which can be viewed as finite graphs with the ray attached to them. The examples of
Autor:
Leonid Golinskii
Given two graphs, a backbone and a finger, a comb product is a new graph obtained by grafting a copy of the finger into each vertex of the backbone. We study the comb graphs in the case when both components are the paths of order $n$ and $k$, respect
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f22db588a48f8f5e5e9d266641634d4
http://arxiv.org/abs/1904.06678
http://arxiv.org/abs/1904.06678
Autor:
Anton Kutsenko, Leonid Golinskii
We construct a functional model (direct integral expansion) and study the spectra of certain periodic block-operator Jacobi matrices, in particular, of general 2D partial difference operators of the second order. We obtain the upper bound, optimal in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::124deaee0fdb8799c5a476c73f912469
Autor:
S. Favorov, Leonid Golinskii
Publikováno v:
Revista Matemática Iberoamericana. 31:1-32
We introduce a new geometric characteristic of compact sets on the plane called $r$-convexity, which fits nicely into the concept of generalized convexity and extends essentially the conventional convexity. For a class of subharmonic functions on unb
Publikováno v:
Revista Math. Iberoamericana
Revista Math. Iberoamericana, 2018, 34 (3), pp.1153-1175
Revista Math. Iberoamericana, 2018, 34 (3), pp.1153-1175
Extending the results of Borichev--Golinskii--Kupin [2009], we obtain refined Blaschke-type necessary conditions on the zero distribution of analytic functions on the unit disk and on the complex plane with a cut along the positive semi-axis satisfyi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5a5a600b6869d481eb75360d45b0d77a
http://arxiv.org/abs/1603.04104
http://arxiv.org/abs/1603.04104
Autor:
Leonid Golinskii, Stanislas Kupin
Publikováno v:
Letters in Mathematical Physics
Letters in Mathematical Physics, Springer Verlag, 2017, 107 (3), pp.467-474
Letters in Mathematical Physics, Springer Verlag, 2017, 107 (3), pp.467-474
We apply a recent result of Borichev-Golinskii-Kupin on the Blaschke-type conditions for zeros of analytic functions on the complex plane with a cut along the positive semi-axis to the problem of the eigenvalues distribution of the Fredholm-type anal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ff169471bc7673ed245c461eab895f7d
Autor:
Leonid Golinskii, S. Favorov
Publikováno v:
Computational Methods and Function Theory. 12:151-166
We continue the study of analytic and subharmonic functions in the unit disk of finite order with an arbitrary set of singular points on the unit circle, introduced in [6]. We focus on a local analog of the main result from [6], which is similar to t