Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Leonelo Iturriaga"'
Existence and Multiplicity Results for Degenerate Elliptic Equations with Dependence on the Gradient
Autor:
Sebastian Lorca, Leonelo Iturriaga
Publikováno v:
Boundary Value Problems, Vol 2007 (2007)
We study the existence of positive solutions for a class of degenerate nonlinear elliptic equations with gradient dependence. For this purpose, we combine a blowup argument, the strong maximum principle, and Liouville-type theorems to obtain a priori
Externí odkaz:
https://doaj.org/article/19a0104082144632a4ed65ebaeca94aa
Publikováno v:
Topological Methods in Nonlinear Analysis. :1-25
We study existence and multiplicity of radial solutions for some quasilinear elliptic problems involving the operator $L_N=\Delta - x\cdot \nabla$ on $\mathbb{R}^N\setminus B_1$, where $\Delta$ is the Laplacian, $x\cdot \nabla$ is an unbounded drift
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 39:2555-2579
In this paper we consider the non-autonomous quasilinear elliptic problem \begin{document}$ \begin{cases} -\Delta_p u = \lambda |x|^{\delta} f(u) &\mbox{in }B_1(0)\\ u = 0 &\mbox{in }\partial B_1(0), \end{cases} $\end{document} where \begin{document}
Autor:
Leonelo Iturriaga, Patricio Cerda
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 150:3074-3086
In this paper, we study the existence of weak solutions of the quasilinear equation \begin{cases} -{\rm div} (a(\vert \nabla u \vert ^2)\nabla u)=\lambda f(x,u) &{\rm in} \ \Omega,\\ u=0 &{\rm on} \ \partial\Omega, \end{cases}where a : ℝ → [0,
Autor:
Leonelo Iturriaga, Eugenio Massa
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this paper we study the geometry of certain functionals associated to quasilinear elliptic boundary value problems with a degenerate nonlocal term of Kirchhoff type. Due to the degeneration of the nonlocal term it is not possible to directly use c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9f8b6d57cdc63652d7113882f7cb0f53
Publikováno v:
Complex Variables and Elliptic Equations. 64:933-949
In this work, we obtain some new Liouville's theorems for positive, radially symmetric solutions of the equation −Δu=f(u)in RN, where f is a continuous function in [0,+∞) which is positive in (0,∞)...
Publikováno v:
Communications on Pure & Applied Analysis. 17:1765-1783
In this work we study the following quasilinear elliptic equation: \begin{document}$\left\{ {\begin{array}{*{20}{l}}{ - {\rm{div}}(\frac{{|x{|^\alpha }\nabla u}}{{{{(a(|x|) + g(u))}^\gamma }}}) = |x{|^\beta }{u^p}}&{{\rm{in}} \ \Omega }\\{u = 0}&{{\r
Autor:
Leonelo Iturriaga, Eugenio Massa
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this paper we consider the equation \begin{document}$(-Δ)^k\, u = λ f(x, u)+μ g(x, u)$\end{document} with Navier boundary conditions, in a bounded and smooth domain. The main interest is when the nonlinearity is nonnegative but admits a zero an
We study the nonlocal nonlinear problem \begin{equation}\label{ppp} \left\{ \begin{array}[c]{lll} (-\Delta)^s u = \lambda f(u) & \mbox{in }\Omega, \\ u=0&\mbox{on } \mathbb{R}^N\setminus\Omega, \end{array} \right. \tag{$P_{\lambda}$} \end{equation} w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6e12cbfa45fe8a5e46597c956be6c1d2
http://arxiv.org/abs/1909.03208
http://arxiv.org/abs/1909.03208
Publikováno v:
Nonlinear Analysis. 134:117-126
In this paper we consider the semilinear elliptic problem { − Δ u = λ f ( u ) in Ω , u = 0 on ∂ Ω , where f is a nonnegative, locally Lipschitz continuous function, Ω is a smooth bounded domain and λ > 0 is a parameter. Under the assumption