Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Leonardo O. Iheme"'
Autor:
Mahmut Ucar, Leonardo O Iheme, Sevgi Onal, Devrim Pesen- Okvur, Ozden Yalcin- Ozuysal, Behcet U Toreyin, Devrim Unay
Publikováno v:
Electrica, Vol 24, Iss 1, Pp 60-66 (2024)
Externí odkaz:
https://doaj.org/article/cb8c5b475bb54932801d9cfab1da5d2b
Autor:
Mahmut Ucar, Leonardo O. Iheme, Sevgi Onal, Ozden Y. Ozuysal, Devrim P. Okvur, Behcet U. Toreyin, Devrim Unay
Publikováno v:
2022 Medical Technologies Congress (TIPTEKNO).
Autor:
Cisem Yazici, Gulsah Ozsoy, Gizem Solmaz, Samet Ayalti, Umit Ince, Cavit Kerem Kayhan, Engin Bozaba, Leonardo O. Iheme, Sercan Cayir, Fatma Tokat
Publikováno v:
SIU
The number of breast cancer cases and mortality rate has been on the rise globally. For effective treatment and curbing the mortality rate, early diagnosis is paramount. To evaluate the effectiveness of treatment, a fundamental step is histopathologi
Autor:
Umit Ince, Engin Bozaba, Cavit Kerem Kayhan, Gulsah Ozsoy, Fatma Tokat, Gizem Solmaz, Sercan Cayir, Leonardo O. Iheme, Cisem Yazici, Samet Ayalti
Publikováno v:
Computer Analysis of Images and Patterns ISBN: 9783030891275
CAIP (1)
CAIP (1)
In an effort to ease the job of pathologists while examining Hematoxylin and Eosin stained breast tissue, this study presents a deep learning-based classifier of nuclear pleomorphism according to the Nottingham grading scale. We show that high classi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1d7fd6e91ad7c98411e68922650dcc27
https://doi.org/10.1007/978-3-030-89128-2_18
https://doi.org/10.1007/978-3-030-89128-2_18
Autor:
Sukru Ozan, Leonardo O. Iheme
Publikováno v:
2019 11th International Conference on Electrical and Electronics Engineering (ELECO).
In this study, we present the process of designing machine learning models for the detection of call center agent malpractices. Based on the features extracted from audio recordings of a given telephone conversation, appropriate one-class support vec
Autor:
Sukru Ozan, Leonardo O. Iheme
Publikováno v:
2019 Innovations in Intelligent Systems and Applications Conference (ASYU).
In the field of digital audio processing, the classification of audio segments is a crucial pre-processing step towards performing more complex tasks such as automatic speech recognition or music genre classification. In our study, we investigate the
Autor:
Leonardo O. Iheme, Sukru Ozan
Publikováno v:
SIU
Customer segmentation is an important method both in customer relationship management literature and software since it directly relates with customer satisfaction of the companies. The most common way to separate customers into two distinct groups is
This study presents the development of a voice activity detection (VAD) system tested on call center telephony data obtained from our local site. The concept of bag of audio words (BoAW) combined with a naive Bayes classifier was applied to achieve t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::80570593f7300f5cac1748232bae64ba
https://aperta.ulakbim.gov.tr/record/67391
https://aperta.ulakbim.gov.tr/record/67391
Autor:
Pierre-Louis Bazin, Pierre Maurel, James Nguyen, Amod Jog, Bram Platel, Heinz Handels, Ariel Birenbaum, Aaron Carass, Oskar Maier, Diana M. Sima, Daniel S. Reich, Devrim Unay, Olga Ciccarelli, Abhijith Chunduru, Jennifer L. Cuzzocreo, Saurabh Jain, Dzung L. Pham, Ciprian M. Crainiceanu, Manuel Jorge Cardoso, Leonardo O. Iheme, Adrian Gherman, Tal Arbel, Snehashis Roy, Olivier Commowick, Ramanathan Muthuganapathy, Xavier Tomas-Fernandez, Dirk Smeets, Suthirth Vaidya, Claudia A. M. Wheeler-Kingshott, Andrew Jesson, Carole H. Sudre, Laurence Catanese, Christian Barillot, Hayit Greenspan, Niamh Cawley, Sebastien Ourselin, Hrishikesh Deshpande, Mohsen Ghafoorian, Peter A. Calabresi, Simon K. Warfield, Elizabeth Magrath, Julia Button, Lotta Maria Ellingsen, Ferran Prados, Jerry L. Prince, Ganapathy Krishnamurthi
Publikováno v:
NeuroImage
NeuroImage, 2017, 148, pp.77-102. ⟨10.1016/j.neuroimage.2016.12.064⟩
NeuroImage, Elsevier, 2017, 148, pp.77-102. ⟨10.1016/j.neuroimage.2016.12.064⟩
NeuroImage, 148, 77-102
NeuroImage, 148, pp. 77-102
NeuroImage, 2017, 148, pp.77-102. ⟨10.1016/j.neuroimage.2016.12.064⟩
NeuroImage, Elsevier, 2017, 148, pp.77-102. ⟨10.1016/j.neuroimage.2016.12.064⟩
NeuroImage, 148, 77-102
NeuroImage, 148, pp. 77-102
Contains fulltext : 173122.pdf (Publisher’s version ) (Closed access) In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training
Publikováno v:
Signal and Image Processing.
In this paper we present effective means of digital image transmission by means of Forward Error Correcting (FEC) schemes and Orthogonal Frequency Division Multiplexing (OFDM). The transmission was simulated over the AWGN and a Rayleigh fading channe