Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Leonardo Biliotti"'
Publikováno v:
Anais da Academia Brasileira de Ciências, Vol 74, Iss 2, Pp 207-210 (2002)
We discuss and extend to infinite dimensional Hilbert spaces a well-known tensoriality criterion for linear endomorphisms of the space of smooth vector fields in n.Discutimos e estendemos para espaços de Hilbert um critério de tensorialidade para e
Externí odkaz:
https://doaj.org/article/1c001feeb40845bb928eeb00efdb513b
Autor:
Leonardo Biliotti, Oluwagbenga Windare
Publikováno v:
Nagoya Mathematical Journal. 247:615-623
We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of a compact connected Lie group U with Lie algebra $\mathfrak {u}$ extends holomorphically to an action of the complexified g
Autor:
Leonardo Biliotti
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series. 53:741-750
Let $(Z,\omega)$ be a connected Kahler manifold with an holomorphic action of the complex reductive Lie group $U^{\mathbb C}$, where $U$ is a compact connected Lie group acting in a hamiltonian fashion. Let $G$ be a closed compatible Lie group of $U^
Autor:
Leonardo Biliotti
Publikováno v:
São Paulo Journal of Mathematical Sciences. 15:54-74
This paper does not contain any new result. We give new proofs of the Kempf–Ness Theorem and Hilbert–Mumford criterion for real reductive representations avoiding any algebraic results.
Autor:
Leonardo Biliotti, Gaetano Siciliano
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Symmetry plays a basic role in variational problems (settled e.g. in $\mathbb R^{n}$ or in a more general manifold), for example to deal with the lack of compactness which naturally appear when the problem is invariant under the action of a noncompac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::305fb3951b9f0d46e0a6ab85c31d9e21
Autor:
Alessandro Ghigi, Leonardo Biliotti
Publikováno v:
Proceedings of the American Mathematical Society. 146:5409-5419
This note contains some observations on abelian convexity theorems. Convexity along an orbit is established in a very general setting using Kempf-Ness functions. This is applied to give short proofs of the Atiyah-Guillemin-Sternberg theorem and of ab
Autor:
Alberto Raffero, Leonardo Biliotti
Publikováno v:
Complex Manifolds, Vol 5, Iss 1, Pp 133-145 (2018)
Given a Kähler manifold (Z, J, ω) and a compact real submanifold M ⊂ Z, we study the properties of the gradient map associated with the action of a noncompact real reductive Lie group G on the space of probability measures on M. In particular, we
Autor:
Alessandro Ghigi, Leonardo Biliotti
Let $X$ be a compact complex manifold in the Fujiki class $\mathscr{C}$. We study the compactification of $\operatorname{Aut}^0(X)$ given by its closure in Barlet cycle space. The boundary points give rise to non-dominant meromorphic self-maps of $X$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2974101e5844f0683a8912e8a5578ce1
Autor:
Leonardo Biliotti
Let G = K exp ( p ) be a connected real reductive Lie group acting linearly on a finite dimensional vector space V over R . This action admits a Kempf–Ness function and so we have an associated gradient map. If G is Abelian we explicitly compute th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b1f7bf2ed3adaa4f7fae4ea5bbe33ff2
Autor:
Leonardo Biliotti, Alessandro Ghigi
Publikováno v:
American Journal of Mathematics. 135:237-274
Let $G$ be a complex semisimple Lie group, $K$ a maximal compact subgroup and $\tau$ an irreducible representation of $K$ on $V$. Denote by $M$ the unique closed orbit of $G$ in $\Bbb{P}(V)$ and by $\cal{O}$ its image via the moment map. For any meas