Zobrazeno 1 - 10
of 341
pro vyhledávání: '"Leonard Carlitz"'
Autor:
Leonard Carlitz
Publikováno v:
Acta Arithmetica. 37:117-132
Autor:
Leonard Carlitz
Publikováno v:
Advances in Mathematics. 14:92-120
Autor:
Richard Scoville, Leonard Carlitz
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 1974:110-137
Autor:
Leonard Carlitz
Publikováno v:
The American Mathematical Monthly. 82:264-269
Autor:
Leonard Carlitz
Publikováno v:
Annali di Matematica Pura ed Applicata. 99:155-182
Explicit formulas are obtained for the number of p-line arrays of integers (aij) (i=1, 2, ..., p; j=1, 2, ..., n) satisfying 1=ap1=...=a11⩽ap2⩽...a12⩽...⩽apn⩽...⩽a1n and a1j⩽j (j=1, 2, ..., n) and having k coincidences. (A coincidence i
Publikováno v:
Discrete Mathematics. 14(3):215-239
Let @p = (a"1, a"2, ..., a"n), @r = (b"1, b"2, ..., b"n) be two permutations of Z"n = {1, 2, ..., n}. A rise of @p is pair a"i, a"i"+"1 with a"i a"i"+"1. Thus, for i = 1, 2, ..., n - 1, the two pairs a"i, a"i"+"1; b"i, b"i"+"1 are either both rises,
Autor:
Leonard Carlitz
Publikováno v:
SIAM Journal on Mathematical Analysis. 8:701-709
Neuman and Schonbach have obtained explicit formulas for the sum \[S(i,j;N) = \sum\limits_{k = 0}^N {k_i (N - k)^i } \quad (i,j \geqq 0)\] by using known results involving Bernoulli numbers. In the present paper the functions \[\begin{gathered} S(i,j
Autor:
Leonard Carlitz
Publikováno v:
Mathematische Nachrichten. 77:361-371
Autor:
John H. Hodges, Leonard Carlitz
Publikováno v:
Linear Algebra and its Applications. 16(3):285-291
The authors determine the number of ( n + m )× t matrices A ∗ of rank r + v , over a finite field GF ( q ), whose last m rows are those of a given matrix A of rank r + v over GF ( q ) and whose first n rows have a given rank u .
Autor:
Leonard Carlitz, Joel V. Brawley
Publikováno v:
Discrete Mathematics. 76(1):61-65
A polynomial h over a field F is said to be additively decomposable over F if there exist polynomials f and g in F [ x ] each of degree >1 such that the roots of h are precisely all sums α + β of roots α of f and β of g . This paper derives a tes