Zobrazeno 1 - 10
of 460
pro vyhledávání: '"Leonard, Mark"'
Autor:
Leonard, Mark Ryan
Statistical robustness and collaborative inference in a distributed sensor network are two challenging requirements posed on many modern signal processing applications. This dissertation aims at solving these tasks jointly by providing generic algori
Autor:
Theil, Stefan (AUTHOR), Leonard, Mark (AUTHOR), Stelzenmüller, Constanze (AUTHOR), Tocci, Nathalie (AUTHOR), Bildt, Carl (AUTHOR), Niblett, Robin (AUTHOR), Wolff, Guntram (AUTHOR), Kausikan, Bilahari (AUTHOR), Krastev, Ivan (AUTHOR), Sikorski, Radoslaw (AUTHOR)
Publikováno v:
Foreign Policy. Summer2024, Issue 253, p34-49. 15p. 11 Color Photographs.
Autor:
Martyn, Emily, O’Regan, Sive, Harris, Philippa, Leonard, Mark, Veitch, Martha, Sultan, Binta, Matthews, Philippa C., Ghosh, Indrajit, Story, Alistair, Surey, Julian
Publikováno v:
In Journal of Infection February 2024 88(2):167-172
Autor:
Leonard, Mark C.
The academic and corporate pursuit of many programs is to understand the implications of leadership styles on organizations. Countless research hours have been spent examining the leadership construct in the hope of developing programs that impact pe
Externí odkaz:
http://pqdtopen.proquest.com/#viewpdf?dispub=10244505
Autor:
Sasu, Barbra J., Opiteck, Gregory J., Gopalakrishnan, Suhasni, Kaimal, Vivek, Furmanak, Tom, Huang, David, Goswami, Angshumala, He, Ying, Chen, Jiamin, Nguyen, Anh, Balakumaran, Arun, Shah, Nirav N., Hamadani, Mehdi, Bone, Kathleen M., Prashad, Sacha, Bowen, Michael A., Pertel, Thomas, Embree, Heather D., Gidwani, Shalini G., Chang, David, Moore, Alison, Leonard, Mark, Amado, Rafael G.
Publikováno v:
In Molecular Therapy 1 March 2023 31(3):676-685
Autor:
Leonard, Mark, Shapiro, Jeremy
Publikováno v:
Diplomatie, 2021 Sep 01(111), 38-40.
Externí odkaz:
https://www.jstor.org/stable/48618803
Autor:
Leonard, Mark, Shapiro, Jeremy
Publikováno v:
Diplomatie, 2021 Sep 01(111), 41-43.
Externí odkaz:
https://www.jstor.org/stable/48618804
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Leonard, Mark R., Zoubir, Abdelhak M.
We consider the problem of sequential binary hypothesis testing with a distributed sensor network in a non-Gaussian noise environment. To this end, we present a general formulation of the Consensus + Innovations Sequential Probability Ratio Test (CIS
Externí odkaz:
http://arxiv.org/abs/1802.00263