Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Leo Tzou"'
Publikováno v:
Mathematical Methods in the Applied Sciences. 45:10027-10051
This paper considers the narrow escape problem of a Brownian particle within a three-dimensional Riemannian manifold under the influence of the force field. We compute an asymptotic expansion of mean sojourn time for Brownian particles. As an auxilia
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 150:202-240
We use geometric microlocal methods to compute an asymptotic expansion of mean first arrival time for Brownian particles on Riemannian manifolds. This approach provides a robust way to treat this problem, which has thus far been limited to very speci
Autor:
Francis J. Chung, Leo Tzou
Publikováno v:
Transactions of the American Mathematical Society, Series B. 7:97-132
We construct an explicit Green’s function for the conjugated Laplacian e − ω ⋅ x / h Δ e − ω ⋅ x / h e^{-\omega \cdot x/h}\Delta e^{-\omega \cdot x/h} , which lets us control our solutions on roughly half of the boundary. We apply the Gr
Publikováno v:
Bulletin of the Australian Mathematical Society. 103:132-144
We extend existing methods which treat the semilinear Calderón problem on a bounded domain to a class of complex manifolds with Kähler metric. Given two semilinear Schrödinger operators with the same Dirchlet-to-Neumann data, we show that the inte
Autor:
Leo Tzou, J. C. Tzou
Publikováno v:
SIAM Journal on Applied Dynamical Systems. 19:2500-2529
Motivated by the model proposed by Gandhi et al. in [J. R. Soc. Interface, 15 (2018), 20180508], we propose a two-component reaction-advection-diffusion model for vegetation density and soil water ...
In this article, we study stability estimates when recovering magnetic fields and electric potentials in a simply connected open subset in Rn with n≥3, from measurements on open subsets of its boundary. This inverse problem is associated with a mag
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::61764fc19cb589aec6643d83ab4543b3
http://urn.fi/URN:NBN:fi:jyu-202206103256
http://urn.fi/URN:NBN:fi:jyu-202206103256
Autor:
Leo Tzou, J. C. Tzou
Publikováno v:
Nonlinearity. 33:643-674
For the Schnakenberg activator-inhibitor model on a torus, in the singularly perturbed regime of small activator to inhibitor diffusivity ratio , we derive a reduced ODE describing the influence of curvature on the the slow drift dynamics of a single
Publikováno v:
HAL
International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), In press
International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), In press
In this article, we study the properties of the geodesic X-ray transform for asymptotically Euclidean or conic Riemannian metrics and show injectivity under non-trapping and no conjugate point assumptions. We also define a notion of lens data for suc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::75263190027d2546c84e5da74ac78a1e
https://hal.archives-ouvertes.fr/hal-02324540
https://hal.archives-ouvertes.fr/hal-02324540
Autor:
Joel Andersson, Leo Tzou
Publikováno v:
Inverse Problems & Imaging. 12:1-28
We consider a magnetic Schrodinger operator \begin{document} $(\nabla^X)^*\nabla^X+q$ \end{document} on a compact Riemann surface with boundary and prove a \begin{document} $\log\log$ \end{document} -type stability estimate in terms of Cauchy data fo
Autor:
Leo Tzou, Valter Pohjola
Publikováno v:
Communications in Mathematical Physics. 356:107-142
We prove a fixed frequency inverse scattering result for the magnetic Schrodinger operator (or connection Laplacian) on surfaces with Euclidean ends. We show that, under suitable decaying conditions, the scattering matrix for the operator determines