Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Leo Margolis"'
Autor:
Leo Margolis, Ángel del Río
Publikováno v:
Advances in Group Theory and Applications, Vol 8, Pp 1-37 (2019)
Externí odkaz:
https://doaj.org/article/3934a549578b4a78982deb86c781d20c
Autor:
Leo Margolis, Ofir Schnabel
Publikováno v:
Israel Journal of Mathematics. 242:997-1000
We rectify Theorem 3.4 of [1] which gives a relation between the isomorphism types of a group algebra FG of a finite abelian group G over a field F of characteristic 0, the second cohomology group H2(G, F*) and the isomorphism type of G. We show how
Autor:
Mauricio Caicedo, Leo Margolis
Publikováno v:
Journal of the London Mathematical Society. 103:1515-1546
We show that if the Sylow $p$-subgroup of a finite group $G$ is of order $p$, then the normalized unit group of the integral group ring of $G$ contains a normalized unit of order $pq$ if and only if $G$ contains an element of order $pq$, where $q$ is
Autor:
Leo Margolis
Publikováno v:
Journal of Symbolic Computation. 95:162-176
The Prime Graph Question for integral group rings asks if it is true that if the normalized unit group of the integral group ring of a finite group $G$ contains an element of order $pq$, for some primes $p$ and $q$, also $G$ contains an element of th
Autor:
Leo Margolis, Ángel del Río
Publikováno v:
arXiv.org e-Print Archive
Zassenhaus conjectured that any unit of finite order in the integral group ring $\mathbb{Z}G$ of a finite group $G$ is conjugate in the rational group algebra of $G$ to an element in $\pm G$. We review the known weaker versions of this conjecture and
Publikováno v:
Journal of Algebra. 531:320-335
H.J. Zassenhaus conjectured that any unit of finite order in the integral group ring Z G of a finite group G is conjugate in the rational group algebra Q G to an element of the form ± g with g ∈ G . This is known to be true for some series of solv
We provide non-isomorphic finite 2-groups which have isomorphic group algebras over any field of characteristic 2, thus settling the Modular Isomorphism Problem.
5 pages
5 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9945b82eda0d74141ccb36e52bd16792
http://arxiv.org/abs/2106.07231
http://arxiv.org/abs/2106.07231
Autor:
Leo Margolis, Moede, T.
Publikováno v:
Web of Science
We study the Modular Isomorphism Problem (MIP) for groups of small order based on an improvement of an algorithm described by B. Eick. Our improvement allows to determine quotients $I(kG)/I(kG)^m$ of the augmentation ideal without first computing the
Autor:
Leo Margolis, Ofir Schnabel
We continue our investigation of a variation of the group ring isomorphism problem for twisted group algebras. Contrary to previous work, we include cohomology classes which do not contain any cocycle of finite order. This allows us to study the prob
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::15d6446a1dd4fc16a6287c2e31d84774
http://arxiv.org/abs/2011.10129
http://arxiv.org/abs/2011.10129
Autor:
Leo Margolis, Mima Stanojkovski
Publikováno v:
Web of Science
We study the Modular Isomorphism Problem applying a combination of existing and new techniques. We make use of the small group algebra to give a positive answer for two classes of groups of nilpotency class 3. We also introduce a new approach to deri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::668898e6cae60ca31e5687f57ba4824a
http://arxiv.org/abs/2009.13970
http://arxiv.org/abs/2009.13970