Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Lennart Gehrmann"'
Autor:
Lennart Gehrmann, Maria Rosaria Pati
Publikováno v:
Forum of Mathematics, Sigma, Vol 12 (2024)
Let $\pi $ be a cuspidal, cohomological automorphic representation of an inner form G of $\operatorname {{PGL}}_2$ over a number field F of arbitrary signature. Further, let $\mathfrak {p}$ be a prime of F such that G is split at $\mathfrak
Externí odkaz:
https://doaj.org/article/62c989a3daf64f0884b682d1de5f57bf
Autor:
Michele Fornea, Lennart Gehrmann
Publikováno v:
Advances in Mathematics. 414:108861
Autor:
Lennart Gehrmann
Recently, Gekeler proved that the group of invertible analytic functions modulo constant functions on Drinfeld's upper half space is isomorphic to the dual of an integral generalized Steinberg representation. In this note we show that the group of in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::432c0f9fae9020601eefc60504787e2f
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85124811692
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85124811692
Autor:
Lennart Gehrmann
Publikováno v:
Documenta Mathematica. 24:1225-1243
Autor:
Lennart Gehrmann, Felix Bergunde
Publikováno v:
Transactions of the American Mathematical Society. 370:6297-6329
Let E be a quadratic extension of a totally real number field. We construct Stickelberger elements for Hilbert modular forms of parallel weight 2 in anticyclotomic extensions of E. Extending methods developed by Dasgupta and Spie{\ss} from the multip
Autor:
Lennart Gehrmann
Gelfand's trick shows that the spherical Hecke algebra of a $p$-adic split reductive group is commutative. We adapt this strategy in order to show that the spherical derived Hecke algebra is graded-commutative under mild assumptions on the coefficien
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::663ec47812caae050598be74d9b2a6bc
Autor:
Lennart Gehrmann, Giovanni Rosso
In earlier work, the first named author generalized the construction of Darmon-style $\mathcal{L}$-invariants to cuspidal automorphic representations of semisimple groups of higher rank, which are cohomological with respect to the trivial coefficient
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c83433c32c5e7657d9b0aaadca06a7b9
Autor:
Lennart Gehrmann
Let $G$ be a reductive group over a number field $F$, which is split at a finite place $\mathfrak{p}$ of $F$, and let $\pi$ be a cuspidal automorphic representation of $G$, which is cohomological with respect to the trivial coefficient system and Ste
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1b6d2d48ac4d6d2b8f2d0511d24807e7
http://arxiv.org/abs/1912.05209
http://arxiv.org/abs/1912.05209
Autor:
Lennart Gehrmann, Felix Bergunde
Publikováno v:
Proceedings of the London Mathematical Society. 114:103-132
We construct Stickelberger elements for Hilbert modular cusp forms of parallel weight 2 and use recent results of Dasgupta and Spiess to bound their order of vanishing from below. As a special case the vanishing part of Mazur and Tate's refined "Birc
Autor:
Lennart Gehrmann
Let $\pi$ be a cohomological automorphic representation of $PGL(2)$ over a number field of arbitrary signature and assume that the local component of $\pi$ at a prime $\mathfrak{p}$ is the Steinberg representation. In this situation one can define an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9c9a97a36ed1ccec4c4f52c54d07f8dc
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85075142047
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85075142047