Zobrazeno 1 - 10
of 261
pro vyhledávání: '"Lenca , Philippe"'
Publikováno v:
Network Science, 8(1), 1-41, 2020
Discovering community structure in complex networks is a mature field since a tremendous number of community detection methods have been introduced in the literature. Nevertheless, it is still very challenging for practioners to determine which metho
Externí odkaz:
http://arxiv.org/abs/1812.06598
Community detection emerges as an important task in the discovery of network mesoscopic structures. However, the concept of a "good" community is very context-dependent and it is relatively complicated to deduce community characteristics using availa
Externí odkaz:
http://arxiv.org/abs/1806.01386
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Haralambous, Yannis1 (AUTHOR) philippe.lenca@imt-atlantique.fr, Lenca, Philippe1 (AUTHOR)
Publikováno v:
Future Internet. Jul2023, Vol. 15 Issue 7, p239. 27p.
We study the performance of Arabic text classification combining various techniques: (a) tfidf vs. dependency syntax, for feature selection and weighting; (b) class association rules vs. support vector machines, for classification. The Arabic text is
Externí odkaz:
http://arxiv.org/abs/1410.4863
Autor:
Haralambous, Yannis, Lenca, Philippe
We present new methods for pruning and enhancing item- sets for text classification via association rule mining. Pruning methods are based on dependency syntax and enhancing methods are based on replacing words by their hyperonyms of various orders.
Externí odkaz:
http://arxiv.org/abs/1407.7357
Autor:
Le Glaz, Aziliz, Haralambous, Yannis, Kim-Dufor, Deok-Hee, Lenca, Philippe, Billot, Romain, Ryan, Taylor C, Marsh, Jonathan, DeVylder, Jordan, Walter, Michel, Berrouiguet, Sofian, Lemey, Christophe
Publikováno v:
Journal of Medical Internet Research, Vol 23, Iss 5, p e15708 (2021)
BackgroundMachine learning systems are part of the field of artificial intelligence that automatically learn models from data to make better decisions. Natural language processing (NLP), by using corpora and learning approaches, provides good perform
Externí odkaz:
https://doaj.org/article/9e2f58fc0db745a1af0ad00dc0b1326c
Autor:
Maze, Guillaume, Mercier, Herlé, Fablet, Ronan, Tandeo, Pierre, Lopez Radcenco, Manuel, Lenca, Philippe, Feucher, Charlène, Le Goff, Clément
Publikováno v:
In Progress in Oceanography February 2017 151:275-292
Autor:
Amphawan, Komate, Lenca, Philippe
Publikováno v:
In Expert Systems With Applications 30 November 2015 42(21):7882-7894
Publikováno v:
In Engineering Applications of Artificial Intelligence October 2015 45:90-102