Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Lenat, Doug"'
Autor:
Lenat, Doug, Marcus, Gary
Generative AI, the most popular current approach to AI, consists of large language models (LLMs) that are trained to produce outputs that are plausible, but not necessarily correct. Although their abilities are often uncanny, they are lacking in aspe
Externí odkaz:
http://arxiv.org/abs/2308.04445
Autor:
Colombo, Simone, Alivanistos, Dimitrios, Cochez, Michael, Martin, Andreas, Hinkelmann, Knut, Fill, Hans-Georg, Gerber, Aurona, Lenat, Doug, Stolle, Reinhard, van Harmelen, Frank
Publikováno v:
AAAI-MAKE 2022 Machine Learning and Knowledge Engineering for Hybrid Intelligence 2022: Proceedings of the AAAI 2022 Spring Symposium on Machine Learning and Knowledge Engineering for Hybrid Intelligence (AAAI-MAKE 2022) Stanford University, Palo Alto, California, USA, March 21-23, 2022, 1-9
STARTPAGE=1;ENDPAGE=9;TITLE=AAAI-MAKE 2022 Machine Learning and Knowledge Engineering for Hybrid Intelligence 2022
STARTPAGE=1;ENDPAGE=9;TITLE=AAAI-MAKE 2022 Machine Learning and Knowledge Engineering for Hybrid Intelligence 2022
Potential Energy (PE) between 2 bodies with mass, refers to the relative gravitational pull between them. Analogously, in the context of a graph, nodes can thought of as objects where a) the product of the degrees of nodes acts as a proxy for mass, b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::c4520b4fb54d018cc70a2ceb342ea548
https://research.vu.nl/en/publications/cb645bc5-b449-4784-8c0c-900850417eb7
https://research.vu.nl/en/publications/cb645bc5-b449-4784-8c0c-900850417eb7
Autor:
Boomgaard, Guusje, Santamaría, Selene Báez, Tiddi, Ilaria, Sips, Robert Jan, Szlávik, Zoltán, Martin, Andreas, Hinkelmann, Knut, Fill, Hans-Georg, Gerber, Aurona, Lenat, Doug, Stolle, Reinhard, van Harmelen, Frank
Publikováno v:
AAAI-MAKE 2021 Combining Machine Learning and Knowledge Engineering: Proceedings of the AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021) Stanford University, Palo Alto, California, USA, March 22-24, 2021, 1-13
STARTPAGE=1;ENDPAGE=13;TITLE=AAAI-MAKE 2021 Combining Machine Learning and Knowledge Engineering
STARTPAGE=1;ENDPAGE=13;TITLE=AAAI-MAKE 2021 Combining Machine Learning and Knowledge Engineering
Query popularity is a main feature in web-search auto-completion. Several personalization features have been proposed to support specific users' searches, but often do not meet the privacy requirements of a medical environment (e.g. clinical trial se
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::1e241b62b01ae9f58c8b61edafa8b081
https://research.vu.nl/en/publications/44fdca3c-d96e-4591-8297-8f6588800b83
https://research.vu.nl/en/publications/44fdca3c-d96e-4591-8297-8f6588800b83
Autor:
van Stijn, Jip J., Neerincx, Mark A., ten Teije, Annette, Vethman, Steven, Martin, Andreas, Hinkelmann, Knut, Fill, Hans-Georg, Gerber, Aurona, Lenat, Doug, Stolle, Reinhard, van Harmelen, Frank
Publikováno v:
AAAI-MAKE 2021 Combining Machine Learning and Knowledge Engineering: Proceedings of the AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021) Stanford University, Palo Alto, California, USA, March 22-24, 2021, 1-12
STARTPAGE=1;ENDPAGE=12;TITLE=AAAI-MAKE 2021 Combining Machine Learning and Knowledge Engineering
STARTPAGE=1;ENDPAGE=12;TITLE=AAAI-MAKE 2021 Combining Machine Learning and Knowledge Engineering
Increasing automation in the healthcare sector calls for a Hybrid Intelligence (HI) approach to closely study and design the collaboration of humans and autonomous machines. Ensuring that medical HI systems' decision-making is ethical is key. The use
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::b58b7cdd5b7e7d03b6a3bef6a48188d6
https://research.vu.nl/en/publications/7bd06c0e-21f6-4156-88cb-578effd8bf14
https://research.vu.nl/en/publications/7bd06c0e-21f6-4156-88cb-578effd8bf14
Autor:
Mensio, Martino, Bastianelli, Emanuele, Tiddi, Ilaria, Rizzo, Giuseppe, Martin, Andreas, Hinkelmann, Knut, Fill, Hans-Georg, Gerber, Aurona, Lenat, Doug, Stolle, Reinhard, van Harmelen, Frank
Publikováno v:
AAAI-MAKE 2020 Combining Machine Learning and Knowledge Engineering in Practice-Volume I: Spring Symposium: Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice (AAAI-MAKE 2020)-Volume I Stanford University, Palo Alto, California, USA, March 23-25, 2020, 1, 1-9
In this paper, we tackle the problem of lack of understandability of deep learning systems by integrating heterogeneous knowledge sources, and in the specific we present how we used FrameNet to guarantee the correct learning for an LSTM-based semanti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::7e4fd3c72c45a8c3fe6e50547ac32a37
https://research.vu.nl/en/publications/28a90763-af67-43e0-b564-e5b65ac84de5
https://research.vu.nl/en/publications/28a90763-af67-43e0-b564-e5b65ac84de5
Autor:
Martin, Andreas, Hinkelmann, Knut, Gerber, Aurona, Lenat, Doug, van Harmelen, Frank, Clark, Peter
Publikováno v:
AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering: Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019). Stanford University, Palo Alto, California, USA, March 25-27, 2019
AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering
AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::49501c621c02b8d6edc5838d386b80a2
https://research.vu.nl/en/publications/0a31abcf-fd8e-4ab2-a6b8-f6e42ecb9002
https://research.vu.nl/en/publications/0a31abcf-fd8e-4ab2-a6b8-f6e42ecb9002
Autor:
Martin, Andreas, Hinkelmann, Knut, Gerber, Aurona, Lenat, Doug, van Harmelen, Frank, Clark, Peter
Publikováno v:
Martin, A, Hinkelmann, K, Gerber, A, Lenat, D, van Harmelen, F & Clark, P 2019, Preface : Combining machine learning with knowledge engineering (AAAI-Make 2019) . in A Martin (ed.), AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering : Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019). Stanford University, Palo Alto, California, USA, March 25-27, 2019 . CEUR Workshop Proceedings, vol. 2350, CEUR-WS, 2019 AAAI Spring Symposium on Combining Machine Learning with Knowledge Engineering, AAAI-MAKE 2019, Palo Alto, United States, 25/03/19 . < http://ceur-ws.org/Vol-2350/xpreface.pdf >
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4612::e31b5d228fb98d5dd33b13acaeb39cad
https://hdl.handle.net/1871.1/0a31abcf-fd8e-4ab2-a6b8-f6e42ecb9002
https://hdl.handle.net/1871.1/0a31abcf-fd8e-4ab2-a6b8-f6e42ecb9002
Publikováno v:
Communications of the ACM. Nov95, Vol. 38 Issue 11, p45-48. 4p.
Publikováno v:
Miller, George A.; Fillmore, Charles J.; Palmer, Martha S.; Lenat, Doug; & Hayes, Pat. (2004). Large-scale Knowledge Representation Resources for Cognitive Science Research. Proceedings of the Cognitive Science Society, 26(26). Retrieved from: http://www.escholarship.org/uc/item/1px3c3tj
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::dab9ec8d43f30ff22aff48e952c80efc
http://www.escholarship.org/uc/item/1px3c3tj
http://www.escholarship.org/uc/item/1px3c3tj
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.