Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Lelechenko, A. P."'
Publikováno v:
Bìznes Inform, Vol 5, Iss 556, Pp 208-219 (2024)
The article identifies the prerequisites for the formation of information and logistic support for oil transport enterprises while leveling threats to their stable functioning, analyzes the updated requirements and prospects for regulating macro- and
Externí odkaz:
https://doaj.org/article/6f232bfeed93433692ff3ba6b415dd8e
Autor:
Lelechenko, Andrew V.
Publikováno v:
Proceedings of the 6th International Conference on Analytic Number Theory and Spatial Tesselations, Kyiv, 2018, vol. 1, p. 76-86
We improve existing estimates of moments of the Riemann zeta function. As a consequence, we are able to derive new estimates for the asymptotic behaviour of $\sum_{N \alpha \le x} \mathfrak{t}_k(\alpha)$, where $N$ stands for the norm of a complex nu
Externí odkaz:
http://arxiv.org/abs/1808.02583
Autor:
Lelechenko, Andrew V.
Publikováno v:
Visn. Odessk. Univ., Ser. Mat. Mekh., 2014, vol. 19, #2 (22), p. 52-65
We study the asymptotic behaviour of $\sum_{m,n\le x} \tau_{1,2}(mn)$, where $\tau_{1,2}(n) = \sum_{a b^2 = n} 1$, using multidimensional Perron formula and complex integration method. An asymptotic formula with an error term $O(x^{10/7})$ is obtaine
Externí odkaz:
http://arxiv.org/abs/1407.1222
Autor:
Lelechenko, Andrew V.
Our paper is devoted to several problems from the field of modified divisors: namely exponential and infinitary divisors. We study the behaviour of modified divisors, sum-of-divisors and totient functions. Main results concern with the asymptotic beh
Externí odkaz:
http://arxiv.org/abs/1405.7597
Autor:
Lelechenko, Andrew V.
Publikováno v:
Acta Universitatis Sapientiae, Informatica, 2013, vol. 5, #2, p. 271-287
We consider the problem of the computation of $\inf_p \theta p$ over the set of exponent pairs $P \ni p$ under linear constraints for a certain class of objective functions $\theta$. An effective algorithm is presented. The output of the algorithm le
Externí odkaz:
http://arxiv.org/abs/1402.1993
Autor:
Lelechenko, Andrew V.
Publikováno v:
Visn. Odessk. Univ., Ser. Mat. Mekh., 2013, vol. 18, #4 (20), p. 49-59
Consider exponential Carmichael function $\lambda^{(e)}$ such that $\lambda^{(e)}$ is multiplicative and $\lambda^{(e)}(p^a) = \lambda(a)$, where $\lambda$ is usual Carmichael function. We discuss the value of $\sum \lambda^{(e)}(n)$, where $n$ runs
Externí odkaz:
http://arxiv.org/abs/1401.3166
Autor:
Lelechenko, Andrew V.
Publikováno v:
Siauliai Math. Semin., 2015, vol. 10 (18), p. 181-197
Consider the operator $E$ on arithmetic functions such that $Ef$ is the multiplicative arithmetic function defined by $(Ef)(p^a) = f(a)$ for every prime power $p^a$. We investigate the behaviour of $E^m\tau_k$, where $\tau_k$ is a $k$-dimensional div
Externí odkaz:
http://arxiv.org/abs/1307.3683
Autor:
Lelechenko, Andrew V.
Publikováno v:
Visn. Odessk. Univ., Ser. Mat. Mekh., 2013, vol. 18, #1 (17), p. 104-114
Recently Tao, Croot and Helfgott invented an algorithm to determine the parity of the number of primes in a given interval in O(x^{1/2-c+\eps}) steps for some absolute constant c. We propose a slightly different approach, which leads to the implicit
Externí odkaz:
http://arxiv.org/abs/1305.1639
Autor:
Lelechenko, Andrew V.
Publikováno v:
Int. J. Pure Appl. Math., 2015, vol. 98, #2, p. 181-192
N. Minculete has introduced a concept of divisors of order $r$: integer $d=p_1^{b_1}\cdots p_k^{b_k} $ is called a divisor of order $r$ of $n=p_1^{a_1}\cdots p_k^{a_k}$ if $d \mid n$ and $b_j\in\{r, a_j\}$ for $j=1,\ldots,k$. One can consider respect
Externí odkaz:
http://arxiv.org/abs/1302.7300
Autor:
Lelechenko, Andrew V.
Let $\taue_k \colon \Z\to\Z$ be a multiplicative function such that $ \taue_k(p^a) = \sum_{d_1... d_k=a} 1 $. In the present paper we introduce generalizations of $\taue_k$ over the ring of Gaussian integers $\Zi$. We determine their maximal orders b
Externí odkaz:
http://arxiv.org/abs/1211.0724