Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Lejeune, Clément"'
Publikováno v:
In Knowledge-Based Systems 21 June 2020 198
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lejeune, Clément
Publikováno v:
Artificial Intelligence [cs.AI]. Université Toulouse 1 Capitole, 2021. English
A multivariate time series is a time-indexed sequence of multidimensional samples. Such a kind of data appears in many fields since they are the observation of dynamic systems (eg mechanics, biology), which often involve multiple time-dependent varia
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::9dec814aeb177d65b94b64bbcfec9d02
https://hal.archives-ouvertes.fr/tel-03376966
https://hal.archives-ouvertes.fr/tel-03376966
Autor:
Lejeune, Clément
A multivariate time series is a time-indexed sequence of multidimensional samples. Such a kind of data appears in many fields since they are the observation of dynamic systems (eg mechanics, biology), which often involve multiple time-dependent varia
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::217ec88dacc3e9b5d0bc87f501cf8865
https://publications.ut-capitole.fr/id/eprint/43779/
https://publications.ut-capitole.fr/id/eprint/43779/
Publikováno v:
Proceedings of EDBT 2020
International Conference on Extending Database Technology (EDBT 2020)
International Conference on Extending Database Technology (EDBT 2020), Mar 2020, Copenhagen, Denmark. pp.383-386, ⟨10.5441/002/edbt.2020.38⟩
International Conference on Extending Database Technology (EDBT 2020)
International Conference on Extending Database Technology (EDBT 2020), Mar 2020, Copenhagen, Denmark. pp.383-386, ⟨10.5441/002/edbt.2020.38⟩
International audience; The increasing ubiquity of multivariate functional data (MFD) requires methods that can properly detect outliers within such data, where a sample corresponds to $p>1$ parameters observed with respect to (w.r.t) a continuous va
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8eed3efc747c248ab7a06d3d15a0cb8a
https://hal.archives-ouvertes.fr/hal-02942772
https://hal.archives-ouvertes.fr/hal-02942772
Publikováno v:
Journées d'Etude sur la TéléSanté
Journées d'Etude sur la TéléSanté, Sorbonne Universités, May 2019, Paris, France
Journées d'Etude sur la TéléSanté, Sorbonne Universités, May 2019, Paris, France
International audience; Cet article explore de nouvelles étapes dans la mise en œuvre et l’exploitation de l’indicateur de présence afin d’identifier l’activité de déplacements de la personne et modéliser ses habitudes de vie. Cette mod
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::d0993c6ad9aa7b87a90fbae1b436426b
https://hal.archives-ouvertes.fr/hal-02161440
https://hal.archives-ouvertes.fr/hal-02161440
Autor:
Lejeune, Clément
Publikováno v:
Research Summer School on Statistics for Data Science-S4D 2018
Research Summer School on Statistics for Data Science-S4D 2018, Jun 2018, Caen, France
Research Summer School on Statistics for Data Science-S4D 2018, Jun 2018, Caen, France
International audience; Context : Detect possible unexpected behaviors (anomalies) in huge amount of data recorded by sensor systems. Time series data are : •generated by complex physical phenomenons •required to be analyzed by experts-domain Goa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::d71910e181b9eab1c12662455a5ab0db
https://hal.archives-ouvertes.fr/hal-02982970
https://hal.archives-ouvertes.fr/hal-02982970