Zobrazeno 1 - 10
of 973
pro vyhledávání: '"Leibniz algebra"'
Publikováno v:
Electronic Research Archive, Vol 32, Iss 7, Pp 4715-4722 (2024)
Leibniz algebras are non-antisymmetric generalizations of Lie algebras. In this paper, we investigate the properties of complete Leibniz algebras under certain conditions on their extensions. Additionally, we explore the properties of derivations and
Externí odkaz:
https://doaj.org/article/1b30fdc8ec674066accaa125b54c86df
Publikováno v:
Researches in Mathematics, Vol 32, Iss 1, Pp 101-109 (2024)
Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[a,[b,c]]=[[a,b],c]+[b,[a,c]]$ for all $a,b,c\in L$. A linear transformation $f$ of
Externí odkaz:
https://doaj.org/article/e035b222c14c4e4084332d750cacf737
Autor:
Mahmut Koçak, Selim Çetin
Publikováno v:
Journal of Mathematical Sciences and Modelling, Vol 7, Iss 1, Pp 45-50 (2024)
In this article, we delve into the realm of higher dimensional Leibniz-Rinehart algebras, exploring the intricate structures of Leibniz algebroids and their applications. By generalizing the concept of Lie algebroids and incorporating a Leibniz rule
Externí odkaz:
https://doaj.org/article/4edb961703b04aeabf0ceabe2498754d
Publikováno v:
Researches in Mathematics, Vol 31, Iss 1, Pp 52-61 (2023)
Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\in L$. A linear transformati
Externí odkaz:
https://doaj.org/article/320e2dee4aed4006a9bdeb0f4777af66
Publikováno v:
Researches in Mathematics, Vol 31, Iss 1, Pp 62-71 (2023)
We describe the algebra of derivations of some nilpotent Leibniz algebra, having dimensionality 3.
Externí odkaz:
https://doaj.org/article/e8c61ee35b2e4dc6a8d7491d7934c500
Publikováno v:
Mathematics, Vol 12, Iss 8, p 1152 (2024)
Leibniz algebras are generalizations of Lie algebras. Similar to Lie algebras, inner derivations play a crucial role in characterizing complete Leibniz algebras. In this work, we demonstrate that the algebra of inner derivations of a Leibniz algebra
Externí odkaz:
https://doaj.org/article/55d239b6bfab4d50ac133424b5a7ed71
Autor:
D.M. Zhangazinova, A.S. Naurazbekova
Publikováno v:
Қарағанды университетінің хабаршысы. Математика сериясы, Vol 112, Iss 4 (2023)
In recent years there has been a great interest in the study of Zinbiel (dual Leibniz) algebras. Let A be Zinbiel algebra over an arbitrary field K and let e1,e2,...,em,... be a linear basis of A. In 2010 A. Naurazbekova, using the methods of Gro¨bn
Externí odkaz:
https://doaj.org/article/deacafcc60614769865185e136f631af
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
International Journal of Group Theory, Vol 12, Iss 1, Pp 1-20 (2023)
We study the automorphism groups of finite-dimensional cyclic Leibniz algebras. In this connection, we consider the relationships between groups, modules over associative rings and Leibniz algebras.
Externí odkaz:
https://doaj.org/article/1b938aa7bbf84544a5af2842454b58ca