Zobrazeno 1 - 10
of 83
pro vyhledávání: '"Lei, Wenyu"'
We present a finite element scheme for fractional diffusion problems with varying diffusivity and fractional order. We consider a symmetric integral form of these nonlocal equations defined on general geometries and in arbitrary bounded domains. A nu
Externí odkaz:
http://arxiv.org/abs/2302.02863
We consider the numerical approximation of Gaussian random fields on closed surfaces defined as the solution to a fractional stochastic partial differential equation (SPDE) with additive white noise. The SPDE involves two parameters controlling the s
Externí odkaz:
http://arxiv.org/abs/2211.13739
In this work we propose a weighted hybridizable discontinuous Galerkin method (W-HDG) for drift-diffusion problems. By using specific exponential weights when computing the $L^2$ product in each cell of the discretization, we are able to mimic the be
Externí odkaz:
http://arxiv.org/abs/2211.02508
We present a Scharfetter-Gummel (SG) stabilization scheme for high-order Hybrid Discontinuous Galerkin (HDG) approximations of convection-diffusion problems. The scheme is based on a careful choice of the stabilization parameters used to define the n
Externí odkaz:
http://arxiv.org/abs/2211.01648
The non-destructive estimation of doping concentrations in semiconductor devices is of paramount importance for many applications ranging from crystal growth, the recent redefinition of the 1kg to defect, and inhomogeneity detection. A number of tech
Externí odkaz:
http://arxiv.org/abs/2208.00742
Autor:
Lei, Wenyu
We investigate a gradient flow structure of the Ginzburg--Landau--Devonshire (GLD) model for anisotropic ferroelectric materials by reconstructing its energy form. We show that the modified energy form admits at least one minimizer. Under some regula
Externí odkaz:
http://arxiv.org/abs/2111.05924
Autor:
Heltai, Luca, Lei, Wenyu
We propose an adaptive finite element algorithm to approximate solutions of elliptic problems whose forcing data is locally defined and is approximated by regularization (or mollification). We show that the energy error decay is quasi-optimal in two
Externí odkaz:
http://arxiv.org/abs/2110.15029
Autor:
Bonito, Andrea, Lei, Wenyu
We consider numerical approximations of spectral fractional Laplace-Beltrami problems on closed surfaces. The proposed numerical algorithms rely on their Balakrishnan integral representation and consist of a sinc quadrature coupled with standard fini
Externí odkaz:
http://arxiv.org/abs/2101.05141
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Heltai, Luca, Lei, Wenyu
Publikováno v:
Numerische Mathematik, 146(3):571-596, 2020
Approximations of the Dirac delta distribution are commonly used to create sequences of smooth functions approximating nonsmooth (generalized) functions, via convolution. In this work, we show a priori rates of convergence of this approximation proce
Externí odkaz:
http://arxiv.org/abs/1911.02293