Zobrazeno 1 - 10
of 247
pro vyhledávání: '"Lee Youngae"'
We consider the following system of Schr\"odinger equations \begin{equation*}\left.\begin{cases} -\Delta U + \lambda U = \alpha_0 U^3+ \beta UV^2 -\Delta V + \mu(y) V = \alpha_1 V^3+\beta U^2V \end{cases}\right. \text{in} \quad \mathbb{R}^N, \ N=2, 3
Externí odkaz:
http://arxiv.org/abs/2109.12822
Autor:
Li, Na, Lee, Youngae, Suh, Joong Heon, Oh, Jang-Hee, Jin, Seon-Pil, Lee, Dong Hun, Chung, Jin Ho
Publikováno v:
In BBA - Molecular Basis of Disease February 2024 1870(2)
Adiponectin Prevents Skin Inflammation in Rosacea by Suppressing S6 Phosphorylation in Keratinocytes
Autor:
Suh, Joong Heon, Lee, Youngae, Jin, Seon-Pil, Kim, Eun Ju, Seo, Eun Young, Li, Na, Oh, Jang-Hee, Kim, Sung Joon, Lee, Si-Hyung, Lee, Dong Hun, Cho, Soyun, Chung, Jin Ho
Publikováno v:
In Journal of Investigative Dermatology July 2024
We consider non-topological solutions of a nonlinear elliptic system problem derived from the $SU(3)$ Chern-Simons models in $\mathbb{R}^2$. The existence of non-topological solutions even for radial symmetric case has been a long standing open probl
Externí odkaz:
http://arxiv.org/abs/2004.14583
Autor:
Lee, Youngae
We consider an elliptic system arising from a supersymmetric gauge field theory. In this paper, we complete to classify all possible solutions according to their asymptotic behavior under a weak coupling effect. Interestingly, it turns out that one o
Externí odkaz:
http://arxiv.org/abs/2004.05819
In order to study electrically and magnetically charged vortices in fractional quantum Hall effect and anyonic superconductivity, the Maxwell-Chern-Simons (MCS) model was introduced by [Lee, Lee, Min (1990)] as a unified system of the classical Abeli
Externí odkaz:
http://arxiv.org/abs/1907.03559
Publikováno v:
J. Diff. Eq. 269 (2020), no. 3, 2057-2090
We are concerned with the mean field equation with singular data on bounded domains. Under suitable non-degeneracy conditions we prove local uniqueness and non-degeneracy of bubbling solutions blowing up at singular points. The proof is based on shar
Externí odkaz:
http://arxiv.org/abs/1905.11749
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The seminal work \cite{bm} by Brezis and Merle has been pioneering in studying the bubbling phenomena of the mean field equation with singular sources. When the vortex points are not collapsing, the mean field equation possesses the property of the s
Externí odkaz:
http://arxiv.org/abs/1807.04432
Publikováno v:
Comm. PDEs (2019)
We consider the Gel'fand problem, $$ \begin{cases} \Delta w_{\varepsilon}+\varepsilon^2 h e^{w_{\varepsilon}}=0\quad&\mbox{in}\quad\Omega, w_{\varepsilon}=0\quad&\mbox{on}\quad\partial\Omega, \end{cases} $$ where $h$ is a nonnegative function in ${\O
Externí odkaz:
http://arxiv.org/abs/1804.03376