Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Lee Meng-Chieh"'
Autor:
Deforce, Boje, Lee, Meng-Chieh, Baesens, Bart, Asensio, Estefanía Serral, Yoo, Jaemin, Akoglu, Leman
Time series anomaly detection (TSAD) finds many applications such as monitoring environmental sensors, industry KPIs, patient biomarkers, etc. A two-fold challenge for TSAD is a versatile and unsupervised model that can detect various different types
Externí odkaz:
http://arxiv.org/abs/2404.02865
Autor:
Lee, Meng-Chieh, Yu, Haiyang, Zhang, Jian, Ioannidis, Vassilis N., Song, Xiang, Adeshina, Soji, Zheng, Da, Faloutsos, Christos
Given a node-attributed graph, and a graph task (link prediction or node classification), can we tell if a graph neural network (GNN) will perform well? More specifically, do the graph structure and the node features carry enough usable information f
Externí odkaz:
http://arxiv.org/abs/2402.07999
Graph kernels used to be the dominant approach to feature engineering for structured data, which are superseded by modern GNNs as the former lacks learnability. Recently, a suite of Kernel Convolution Networks (KCNs) successfully revitalized graph ke
Externí odkaz:
http://arxiv.org/abs/2402.06087
Given a large graph with few node labels, how can we (a) identify whether there is generalized network-effects (GNE) or not, (b) estimate GNE to explain the interrelations among node classes, and (c) exploit GNE efficiently to improve the performance
Externí odkaz:
http://arxiv.org/abs/2301.00270
How can we solve semi-supervised node classification in various graphs possibly with noisy features and structures? Graph neural networks (GNNs) have succeeded in many graph mining tasks, but their generalizability to various graph scenarios is limit
Externí odkaz:
http://arxiv.org/abs/2210.04081
In a cloud of m-dimensional data points, how would we spot, as well as rank, both single-point- as well as group- anomalies? We are the first to generalize anomaly detection in two dimensions: The first dimension is that we handle both point-anomalie
Externí odkaz:
http://arxiv.org/abs/2109.02704
Autor:
Lee, Meng-Chieh, Zhao, Yue, Wang, Aluna, Liang, Pierre Jinghong, Akoglu, Leman, Tseng, Vincent S., Faloutsos, Christos
How can we spot money laundering in large-scale graph-like accounting datasets? How to identify the most suspicious period in a time-evolving accounting graph? What kind of accounts and events should practitioners prioritize under time constraints? T
Externí odkaz:
http://arxiv.org/abs/2011.00447
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tseng, Shu-Mei, Lee, Meng-Chieh
Publikováno v:
Journal of Enterprise Information Management, 2016, Vol. 29, Issue 6, pp. 903-918.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/JEIM-07-2015-0063
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.