Zobrazeno 1 - 10
of 249
pro vyhledávání: '"Lee, YoonJung"'
We completely resolve the global Cauchy problem for the multi-dimensional Euler-Riesz equations, where the interaction forcing is given by $\nabla (-\Delta)^{-\sigma/2}\rho$ for some $\sigma \in (0,2)$. We construct the global-in-time unique solution
Externí odkaz:
http://arxiv.org/abs/2402.00674
We consider the barotropic Euler equations with pairwise attractive Riesz interactions and linear velocity damping in the periodic domain. We establish the global-in-time well-posedness theory for the system near an equilibrium state. We also analyze
Externí odkaz:
http://arxiv.org/abs/2309.00210
Autor:
Lee, Mikyoung, Lee, Yoonjung
We prove interior weighted Hessian estimates in Orlicz spaces for nondivergence type elliptic equations with a lower order term which involves a nonnegative potential satisfying a reverse H\"older type condition.
Comment: 18 pages
Comment: 18 pages
Externí odkaz:
http://arxiv.org/abs/2308.03285
We revisit the local well-posedness theory of nonlinear Schr\"odinger and wave equations in Sobolev spaces $H^s$ and $\dot{H}^s$, $0< s\leq 1$. The theory has been well established over the past few decades under Sobolev initial data regular with res
Externí odkaz:
http://arxiv.org/abs/2211.01672
Publikováno v:
In Nonlinear Analysis April 2025 253
Autor:
Lee, Yoonjung1 (AUTHOR), Lee, Ahrang1 (AUTHOR), Jeong, Hae Seong1 (AUTHOR), Shin, Sung Un1 (AUTHOR), Kim, Uh Jin1,2 (AUTHOR) iammedkid@naver.com, Kim, Seong Eun1,2 (AUTHOR), Kang, Seung-Ji1,2 (AUTHOR), Jung, Sook-In1,2 (AUTHOR), Park, Kyung-Soon3 (AUTHOR), Seon, Jong Keun3 (AUTHOR), Shin, Jong-Hee4 (AUTHOR), Park, Kyung-Hwa1,2 (AUTHOR) astralio@naver.com
Publikováno v:
PLoS ONE. 8/15/2024, Vol. 19 Issue 8, p1-12. 12p.
We study the Cauchy problem for the inhomogeneous Hartree equation in this paper. Although its well-posedness theory has been extensively studied in recent years, much less is known compared to the classical Hartree model of homogeneous type. In part
Externí odkaz:
http://arxiv.org/abs/2110.14922
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Desta, Kebede Taye, Choi, Yu-Mi, Shin, Myoung-Jae, Yoon, Hyemyeong, Wang, Xiaohan, Lee, Yoonjung, Yi, Jungyoon, Jeon, Young-ah, Lee, Sukyeung
Publikováno v:
In Food Research International November 2023 173 Part 2
The endpoint Strichartz estimate $\|e^{it\Delta} f\|_{L_t^2 L_x^\infty} \lesssim \|f\|_{L^2}$ is known to be false in two space dimensions. Taking averages spherically on the polar coordinates $x=\rho\omega$, $\rho>0$, $\omega\in\mathbb{S}^1$, Tao sh
Externí odkaz:
http://arxiv.org/abs/1912.12784