Zobrazeno 1 - 10
of 1 208
pro vyhledávání: '"Lee, James J"'
Publikováno v:
In Intelligence May-June 2024 104
Autor:
Kim, Yuri, Saunders, Gretchen R.B., Giannelis, Alexandros, Willoughby, Emily A., DeYoung, Colin G., Lee, James J.
Publikováno v:
In Biological Psychology November 2023 184
Publikováno v:
In Materials Today Communications August 2023 36
Autor:
Giannelis, Alexandros, Willoughby, Emily A., Corley, Robin, Hopfer, Christian, Hewitt, John K., Iacono, William G., Anderson, Jacob, Rustichini, Aldo, Vrieze, Scott I., McGue, Matt, Lee, James J.
Publikováno v:
In Journal of Economic Psychology June 2023 96
Autor:
McGue, Matt, Anderson, Elise L., Willoughby, Emily, Giannelis, Alexandros, Iacono, William G., Lee, James J.
Publikováno v:
In Intelligence May-June 2022 92
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Intelligence September-October 2021 88
Autor:
Yang, Shuolong, Sobota, Jonathan A., Leuenberger, Dominik, Kemper, Alexander F., Lee, James J., Schmitt, Felix T., Li, Wei, Moore, Rob G., Kirchmann, Patrick S., Shen, Zhi-Xun
Ultrathin FeSe films grown on SrTiO$_{3}$ substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. Using femtosecond time- and angle-resolved
Externí odkaz:
http://arxiv.org/abs/1506.01763
Autor:
Chang, Christopher C., Chow, Carson C., Tellier, Laurent C. A. M., Vattikuti, Shashaank, Purcell, Shaun M., Lee, James J.
Publikováno v:
GigaScience 2015, 4:7
PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need
Externí odkaz:
http://arxiv.org/abs/1410.4803
Autor:
Vattikuti, Shashaank, Lee, James J., Chang, Christopher C., Hsu, Stephen D. H., Chow, Carson C.
We show that the signal-processing paradigm known as compressed sensing (CS) is applicable to genome-wide association studies (GWAS) and genomic selection (GS). The aim of GWAS is to isolate trait-associated loci, whereas GS attempts to predict the p
Externí odkaz:
http://arxiv.org/abs/1310.2264