Zobrazeno 1 - 10
of 116
pro vyhledávání: '"Lechner, Gandalf"'
We introduce and study the crossing map, a closed linear map acting on operators on the tensor square of a given Hilbert space that is inspired by the crossing property of quantum field theory. This map turns out to be closely connected to Tomita--Ta
Externí odkaz:
http://arxiv.org/abs/2402.15763
KMS states on $\mathbb{Z}_2$-crossed products of unital $C^*$-algebras $\mathcal{A}$ are characterized in terms of KMS states and twisted KMS functionals of $\mathcal{A}$. These functionals are shown to describe the extensions of KMS states $\omega$
Externí odkaz:
http://arxiv.org/abs/2402.15574
Autor:
Lechner, Gandalf
This article reviews recent work with Correa da Silva on twisted Araki-Woods algebras, including an introduction to twisted Fock spaces and standard subspaces. We discuss a new family of examples of that framework, coming from the set-theoretic Yang-
Externí odkaz:
http://arxiv.org/abs/2311.14610
Publikováno v:
Commun. Math. Phys. (2023)
In the general setting of twisted second quantization (including Bose/Fermi second quantization, $S$-symmetric Fock spaces, and full Fock spaces from free probability as special cases), von Neumann algebras on twisted Fock spaces are analyzed. These
Externí odkaz:
http://arxiv.org/abs/2212.02298
Autor:
Lechner, Gandalf, Scotford, Charley
We construct explicit examples of half-sided modular inclusions ${\mathcal N}\subset{\mathcal M}$ of von Neumann algebras with trivial relative commutants. After stating a general criterion for triviality of the relative commutant in terms of an alge
Externí odkaz:
http://arxiv.org/abs/2111.03172
Publikováno v:
J. Operator Theory 86:1(2021), 61-91
The wave operators $W_\pm(H_1,H_0)$ of two selfadjoint operators $H_0$ and $H_1$ are analyzed at asymptotic spectral values. Sufficient conditions for $\|(W_\pm(H_1,H_0)-P_{1}^\mathrm{ac}P_{0}^\mathrm{ac})f(H_0)\| <\infty$ are given, where $P_{j}^\ma
Externí odkaz:
http://arxiv.org/abs/1912.11092
Autor:
Lechner, Gandalf, Scotford, Charley
A variation of the Zamolodchikov-Faddeev algebra over a finite dimensional Hilbert space $\mathcal{H}$ and an involutive unitary $R$-Matrix $S$ is studied. This algebra carries a natural vacuum state, and the corresponding Fock representation spaces
Externí odkaz:
http://arxiv.org/abs/1909.13237
Autor:
Conti, Roberto, Lechner, Gandalf
Every unitary solution of the Yang-Baxter equation (R-matrix) in dimension $d$ can be viewed as a unitary element of the Cuntz algebra ${\mathcal O}_d$ and as such defines an endomorphism of ${\mathcal O}_d$. These Yang-Baxter endomorphisms restrict
Externí odkaz:
http://arxiv.org/abs/1909.04127
Autor:
Correa da Silva, Ricardo1 (AUTHOR) ricardo.correa.silva@fau.de, Lechner, Gandalf1 (AUTHOR)
Publikováno v:
Communications in Mathematical Physics. Sep2023, Vol. 402 Issue 3, p2339-2386. 48p.
Publikováno v:
Adv. Math., Vol. 355, 2019, 106769
Every unitary involutive solution of the quantum Yang-Baxter equation ("R-matrix") defines an extremal character and a representation of the infinite symmetric group $S_\infty$. We give a complete classification of all such Yang-Baxter characters and
Externí odkaz:
http://arxiv.org/abs/1707.00196