Zobrazeno 1 - 10
of 7 517
pro vyhledávání: '"Lech, P."'
It is a market practice to express market-implied volatilities in some parametric form. The most popular parametrizations are based on or inspired by an underlying stochastic model, like the Heston model (SVI method) or the SABR model (SABR parametri
Externí odkaz:
http://arxiv.org/abs/2411.04041
Prepayment risk embedded in fixed-rate mortgages forms a significant fraction of a financial institution's exposure, and it receives particular attention because of the magnitude of the underlying market. The embedded prepayment option (EPO) bears th
Externí odkaz:
http://arxiv.org/abs/2410.21110
Autor:
Polkowski, Lech T.
Rough sets (RS)proved a thriving realm with successes inn many fields of ML and AI. In this note, we expand RS to RM - rough mereology which provides a measurable degree of uncertainty to those areas.
Comment: 18 pages, 1 figure
Comment: 18 pages, 1 figure
Externí odkaz:
http://arxiv.org/abs/2410.11579
Autor:
Duplančić, Goran, Nabeebaccus, Saad, Passek-K., Kornelija, Pire, Bernard, Szymanowski, Lech, Wallon, Samuel
We review our results on a new class of $2 \to 3$ exclusive processes, as a probe of both chiral-even and chiral-odd quark GPDs. We consider the exclusive photoproduction of a photon-meson pair, in the kinematics where the pair has a large invariant
Externí odkaz:
http://arxiv.org/abs/2410.03793
We identify a $ 2 \to 3 $ exclusive process, where collinear factorisation is broken, namely the exclusive photoproduction of a $ \pi ^{0}\gamma $ pair with large invariant mass. This occurs because the process suffers from gluon exchanges trapped in
Externí odkaz:
http://arxiv.org/abs/2409.20430
We exhibit an exclusive process, namely the photoproduction of a $\pi^{0}\gamma$ pair with large invariant mass, which violates collinear factorization. We explicitly demonstrate that this is due to the fact that there exists diagrams with gluon exch
Externí odkaz:
http://arxiv.org/abs/2409.16067
Sequential learning involves learning tasks in a sequence, and proves challenging for most neural networks. Biological neural networks regularly conquer the sequential learning challenge and are even capable of transferring knowledge both forward and
Externí odkaz:
http://arxiv.org/abs/2409.15729
Autor:
Chrzanowska, Agnieszka, Longa, Lech
The recent experimental discovery of ferroelectric and splay nematic phases has sparked interest in comprehending the crucial molecular features necessary to stabilize these innovative structures. This study advances the ongoing discourse by investig
Externí odkaz:
http://arxiv.org/abs/2409.09851
Autor:
Batista, Rafael Alves, Benoit-Lévy, Aurélien, Bister, Teresa, Bohacova, Martina, Bustamante, Mauricio, Carvalho, Washington, Chen, Yiren, Cheng, LingMei, Chiche, Simon, Colley, Jean-Marc, Correa, Pablo, Laurenciu, Nicoleta Cucu, Dai, Zigao, de Almeida, Rogerio M., de Errico, Beatriz, de Jong, Sijbrand, Neto, João R. T. de Mello, de Vries, Krijn D, Decoene, Valentin, Denton, Peter B., Duan, Bohao, Duan, Kaikai, Engel, Ralph, Erba, William, Fan, Yizhong, Ferrière, Arsène, Gou, QuanBu, Gu, Junhua, Guelfand, Marion, Guo, Jianhua, Guo, Yiqing, Guépin, Claire, Gülzow, Lukas, Haungs, Andreas, Havelka, Matej, He, Haoning, Hivon, Eric, Hu, Hongbo, Huang, Xiaoyuan, Huang, Yan, Huege, Tim, Jiang, Wen, Koirala, Ramesh, Kong, ChuiZheng, Kotera, Kumiko, Köhler, Jelena, Lago, Bruno L., Lai, Zhisen, Coz, Sandra Le, Legrand, François, Leisos, Antonios, Li, Rui, Li, Xingyu, Li, YiFei, Liu, Cheng, Liu, Ruoyu, Liu, Wei, Ma, Pengxiong, Macias, Oscar, Magnard, Frédéric, Marcowith, Alexandre, Martineau-Huynh, Olivier, McKinley, Thomas, Minodier, Paul, Mitra, Pragati, Mostafá, Miguel, Murase, Kohta, Niess, Valentin, Nonis, Stavros, Ogio, Shoichi, Oikonomou, Foteini, Pan, Hongwei, Papageorgiou, Konstantinos, Pierog, Tanguy, Piotrowski, Lech Wiktor, Prunet, Simon, Qian, Xiangli, Roth, Markus, Sako, Takashi, Schoorlemmer, Harm, Szálas-Motesiczky, Dániel, Sławiński, Szymon, Tian, Xishui, Timmermans, Anne, Timmermans, Charles, Tobiska, Petr, Tsirigotis, Apostolos, Tueros, Matías, Vittakis, George, Wang, Hanrui, Wang, Jiale, Wang, Shen, Wang, Xiangyu, Wang, Xu, Wei, Daming, Wei, Feng, Wu, Xiangping, Wu, Xuefeng, Xu, Xin, Xu, Xing, Yang, Fufu, Yang, Lili, Yang, Xuan, Yuan, Qiang, Zarka, Philippe, Zeng, Houdun, Zhang, Chao, Zhang, Jianli, Zhang, Kewen, Zhang, Pengfei, Zhang, Qingchi, Zhang, Songbo, Zhang, Yi, Zhou, Hao, Wissel, Stephanie, Zeolla, Andrew, Deaconu, Cosmin, Hughes, Kaeli, Martin, Zachary, Mulrey, Katharine, Cummings, Austin, Krömer, Oliver, Plant, Kathryn, Schroeder, Frank G.
This is an index of the contributions by the Giant Radio Array for Neutrino Detection (GRAND) Collaboration to the 10th International Workshop on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2024, University of Chicago, June 11-14, 202
Externí odkaz:
http://arxiv.org/abs/2409.03427
Autor:
GRAND Collaboration, Batista, Rafael Alves, Benoit-Lévy, Aurélien, Bister, Teresa, Bohacova, Martina, Bustamante, Mauricio, Carvalho, Washington, Chen, Yiren, Cheng, LingMei, Chiche, Simon, Colley, Jean-Marc, Correa, Pablo, Laurenciu, Nicoleta Cucu, Dai, Zigao, de Almeida, Rogerio M., de Errico, Beatriz, de Jong, Sijbrand, Neto, João R. T. de Mello, de Vries, Krijn D., Decoene, Valentin, Denton, Peter B., Duan, Bohao, Duan, Kaikai, Engel, Ralph, Erba, William, Fan, Yizhong, Ferrière, Arsène, Gou, QuanBu, Gu, Junhua, Guelfand, Marion, Guo, Jianhua, Guo, Yiqing, Guépin, Claire, Gülzow, Lukas, Haungs, Andreas, Havelka, Matej, He, Haoning, Hivon, Eric, Hu, Hongbo, Huang, Xiaoyuan, Huang, Yan, Huege, Tim, Jiang, Wen, Koirala, Ramesh, Kong, ChuiZheng, Kotera, Kumiko, Köhler, Jelena, Lago, Bruno L., Lai, Zhisen, Coz, Sandra Le, Legrand, François, Leisos, Antonios, Li, Rui, Li, Xingyu, Li, YiFei, Liu, Cheng, Liu, Ruoyu, Liu, Wei, Ma, Pengxiong, Macias, Oscar, Magnard, Frédéric, Marcowith, Alexandre, Martineau-Huynh, Olivier, McKinley, Thomas, Minodier, Paul, Mitra, Pragati, Mostafá, Miguel, Murase, Kohta, Niess, Valentin, Nonis, Stavros, Ogio, Shoichi, Oikonomou, Foteini, Pan, Hongwei, Papageorgiou, Konstantinos, Pierog, Tanguy, Piotrowski, Lech Wiktor, Prunet, Simon, Qian, Xiangli, Roth, Markus, Sako, Takashi, Schoorlemmer, Harm, Szálas-Motesiczky, Dániel, Sławiński, Szymon, Tian, Xishui, Timmermans, Anne, Timmermans, Charles, Tobiska, Petr, Tsirigotis, Apostolos, Tueros, Matías, Vittakis, George, Wang, Hanrui, Wang, Jiale, Wang, Shen, Wang, Xiangyu, Wang, Xu, Wei, Daming, Wei, Feng, Wu, Xiangping, Wu, Xuefeng, Xu, Xin, Xu, Xing, Yang, Fufu, Yang, Lili, Yang, Xuan, Yuan, Qiang, Zarka, Philippe, Zeng, Houdun, Zhang, Chao, Zhang, Jianli, Zhang, Kewen, Zhang, Pengfei, Zhang, Qingchi, Zhang, Songbo, Zhang, Yi, Zhou, Hao
Publikováno v:
Computer Physics Communications, volume=308, pages=109461, issn=0010-4655 (2025)
The operation of upcoming ultra-high-energy cosmic-ray, gamma-ray, and neutrino radio-detection experiments, like the Giant Radio Array for Neutrino Detection (GRAND), poses significant computational challenges involving the production of numerous si
Externí odkaz:
http://arxiv.org/abs/2408.10926