Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Leandro Vendramin"'
Autor:
Leandro Vendramin
Publikováno v:
Advances in Group Theory and Applications, Vol 7, Pp 15-37 (2019)
Braces were introduced by Rump as a generalization of Jacobson radical rings. It turns out that braces allow us to use ring-theoretic and group-theoretic methods for studying involutive solutions to the Yang–Baxter equation. If braces are replaced
Externí odkaz:
https://doaj.org/article/72040e3fa51346ec9e1ca4f687c1b209
Publikováno v:
Oberwolfach Reports. 16:3207-3242
Erratum to the paper [Konovalov, Alexander; Smoktunowicz, Agata; Vendramin, Leandro. On skew braces and their ideals. Exp. Math. 30 (2021), no. 1, 95–104. DOI: 10.1080/10586458.2018.1492476.].
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::80cf7b858861f15a62f93361a9181ead
https://doi.org/10.1080/10586458.2021.1980466
https://doi.org/10.1080/10586458.2021.1980466
Publikováno v:
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Publicacions Matemàtiques; Vol. 62, Núm. 2 (2018); p. 641–649
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 62, no. 2 (2018), 641-649
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Publicacions Matemàtiques; Vol. 62, Núm. 2 (2018); p. 641–649
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 62, no. 2 (2018), 641-649
We prove that a finite non-degenerate involutive set-theoretic solution (X,r) of the Yang-Baxter equation is a multipermutation solution if and only if its structure group G(X,r) admits a left ordering or equivalently it is poly-(infinite cyclic).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d12bba3ec814ecb88c952f6a5f29f6d4
http://hdl.handle.net/2072/429719
http://hdl.handle.net/2072/429719
Autor:
S. Ramírez, Leandro Vendramin
Motivated by the proof of Rump of a conjecture of Gateva-Ivanova on the decomposability of square-free solutions to the Yang-Baxter equation, we present several other decomposability theorems based on the cycle structure of a certain permutation asso
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b89a152938cd3d1be10e83c0e8d043df
We use Constraint Satisfaction methods to enumerate and construct set-theoretic solutions to the Yang-Baxter equation of small size. We show that there are 321931 involutive solutions of size nine, 4895272 involutive solutions of size ten and 4224494
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1f66fd44eaad5ba6c2f61946c7e3830b
http://arxiv.org/abs/2008.04483
http://arxiv.org/abs/2008.04483
Autor:
Leandro Vendramin, Victoria Lebed
Given a right-non-degenerate set-theoretic solution $(X,r)$ to the Yang-Baxter equation, we construct a whole family of YBE solutions $r^{(k)}$ on $X$ indexed by its reflections $k$ (i.e., solutions to the reflection equation for $r$). This family in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5a9c29bede0830e8227cada7923acfd
Autor:
Leandro Vendramin, István Heckenberger
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We begin the study of PBW deformations of graded algebras relevant to the theory of Hopf algebras. One of our examples is the Fomin-Kirillov algebra FK3. Another one appeared in a paper of Garc\'ia Iglesias and Vay. As a consequence of our methods, w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7a6228564885f95a005b2e5717c3648d
https://hdl.handle.net/20.500.14017/62e6bce2-1877-413b-bdb1-e6fc6c06cd77
https://hdl.handle.net/20.500.14017/62e6bce2-1877-413b-bdb1-e6fc6c06cd77
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We introduce strong left ideals of skew braces and prove that they produce non-trivial decomposition of set-theoretic solutions of the Yang-Baxter equation. We study factorization of skew left braces through strong left ideals and we prove analogs of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e4b97670ddf28987c0ff719f502c3e7
https://doi.org/10.1007/s00208-019-01909-1
https://doi.org/10.1007/s00208-019-01909-1
Autor:
Victoria Lebed, Leandro Vendramin
Publikováno v:
Proceedings of the Edinburgh Mathematical Society
Proceedings of the Edinburgh Mathematical Society, Cambridge University Press (CUP), 2019, pp.1-35. ⟨10.1017/S0013091518000548⟩
Proceedings of the Edinburgh Mathematical Society, Cambridge University Press (CUP), 2019, pp.1-35. ⟨10.1017/S0013091518000548⟩
This paper explores the structure groups $G_{(X,r)}$ of finite non-degenerate set-theoretic solutions $(X,r)$ to the Yang-Baxter equation. Namely, we construct a finite quotient $\overline{G}_{(X,r)}$ of $G_{(X,r)}$, generalizing the Coxeter-like gro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ff2aac0906b07641dcd66d2a0e0c3565
https://hal-normandie-univ.archives-ouvertes.fr/hal-02143268
https://hal-normandie-univ.archives-ouvertes.fr/hal-02143268