Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Lea Baecker"'
Autor:
Walter H. L. Pinaya, Cristina Scarpazza, Rafael Garcia-Dias, Sandra Vieira, Lea Baecker, Pedro F da Costa, Alberto Redolfi, Giovanni B. Frisoni, Michela Pievani, Vince D. Calhoun, João R. Sato, Andrea Mechelli
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
Abstract Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, includ
Externí odkaz:
https://doaj.org/article/232c67a78bc8428fb037c3b63039cf5c
Publikováno v:
EBioMedicine, Vol 72, Iss , Pp 103600- (2021)
The rise of machine learning has unlocked new ways of analysing structural neuroimaging data, including brain age prediction. In this state-of-the-art review, we provide an introduction to the methods and potential clinical applications of brain age
Externí odkaz:
https://doaj.org/article/f72c20c5667643b3bdfdab9374810abe
Autor:
Rafael Garcia-Dias, Cristina Scarpazza, Lea Baecker, Sandra Vieira, Walter H.L. Pinaya, Aiden Corvin, Alberto Redolfi, Barnaby Nelson, Benedicto Crespo-Facorro, Colm McDonald, Diana Tordesillas-Gutiérrez, Dara Cannon, David Mothersill, Dennis Hernaus, Derek Morris, Esther Setien-Suero, Gary Donohoe, Giovanni Frisoni, Giulia Tronchin, João Sato, Machteld Marcelis, Matthew Kempton, Neeltje E.M. van Haren, Oliver Gruber, Patrick McGorry, Paul Amminger, Philip McGuire, Qiyong Gong, René S. Kahn, Rosa Ayesa-Arriola, Therese van Amelsvoort, Victor Ortiz-García de la Foz, Vince Calhoun, Wiepke Cahn, Andrea Mechelli
Publikováno v:
NeuroImage, Vol 220, Iss , Pp 117127- (2020)
Externí odkaz:
https://doaj.org/article/c1621201bec8498b8713aadf07ed9c54
Autor:
Michela Pievani, Giovanni B. Frisoni, Rafael Garcia-Dias, Vince D. Calhoun, Andrea Mechelli, Lea Baecker, Alberto Redolfi, Pedro F. da Costa, João Ricardo Sato, Cristina Scarpazza, Sandra Vieira, Walter H. L. Pinaya
Publikováno v:
Scientific Reports
Scientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
Lopez Pinaya, W, Scarpazza, C, Garcia Dias, R, Vieira, S, Baecker, L, Da Costa, P F, Redolfi, A, Frisoni, G, Pievani, M, Calhoun, V, Sato, J & Mechelli, A 2021, ' Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer’s disease in a cross-sectional multi-cohort study ', Scientific Reports .
Scientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
Lopez Pinaya, W, Scarpazza, C, Garcia Dias, R, Vieira, S, Baecker, L, Da Costa, P F, Redolfi, A, Frisoni, G, Pievani, M, Calhoun, V, Sato, J & Mechelli, A 2021, ' Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer’s disease in a cross-sectional multi-cohort study ', Scientific Reports .
Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regre
Publikováno v:
EBioMedicine, Vol 72, Iss, Pp 103600-(2021)
EBioMedicine
EBioMedicine
The rise of machine learning has unlocked new ways of analysing structural neuroimaging data, including brain age prediction. In this state-of-the-art review, we provide an introduction to the methods and potential clinical applications of brain age
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5d89ccd28f1606b85f0956813088c3f2
https://hdl.handle.net/11577/3403060
https://hdl.handle.net/11577/3403060
Autor:
Vince D. Calhoun, Pedro F. da Costa, Walter H. L. Pinaya, Sandra Vieira, Jessica Dafflon, Cristina Scarpazza, Rafael Garcia-Dias, Andrea Mechelli, Lea Baecker, João Ricardo Sato
Publikováno v:
Baecker, L, Dafflon, J, Da Costa, P F, Garcia Dias, R, Vieira, S, Scarpazza, C, Calhoun, V D, Sato, J R, Mechelli, A & Pinaya, W H L 2021, ' Brain age prediction: A comparison between machine learning models using region-and voxel-based morphometric data ', Human Brain Mapping, vol. 42, no. 8, pp. 2332-2346 . https://doi.org/10.1002/hbm.25368
Human Brain Mapping
Human Brain Mapping
Brain morphology varies across the ageing trajectory and the prediction of a person's age using brain features can aid the detection of abnormalities in the ageing process. Existing studies on such “brain age prediction” vary widely in terms of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0a78d3fe59c690b22128cb736ae4f6cd
http://hdl.handle.net/11577/3385701
http://hdl.handle.net/11577/3385701
Autor:
João Sato, Therese van Amelsvoort, Qiyong Gong, Oliver Gruber, Patrick D. McGorry, Gary Donohoe, Neeltje E.M. van Haren, Paul Amminger, Alberto Redolfi, Vince D. Calhoun, Machteld Marcelis, Diana Tordesillas-Gutiérrez, Benedicto Crespo-Facorro, Rafael Garcia-Dias, Colm McDonald, Rosa Ayesa-Arriola, Wiepke Cahn, Lea Baecker, Matthew J. Kempton, Cristina Scarpazza, Victor Ortiz-García de la Foz, Walter H. L. Pinaya, René S. Kahn, Dara M. Cannon, Aiden Corvin, Giulia Tronchin, David Mothersill, Andrea Mechelli, Barnaby Nelson, Dennis Hernaus, Sandra Vieira, Philip McGuire, Esther Setién-Suero, Giovanni B. Frisoni, Derek W. Morris
Publikováno v:
Garcia Dias, R, Scarpazza, C, Baecker, L, Mendes Vieira, S, Lopez Pinaya, W, Corvin, A, Redolf, A, Nelson, B, Crespo-Facorro, B, McDonald, C, Tordesillas-Gutiérrez, D, Cannon, D, Mothersill, D, Hernaus, D, Morris, D, Setien-Suero, E, Donohoe, G, Frisoniq, G, Tronchin, G, Sato, J, Marcelis, M, Kempton, M, van Haren, N E M, Gruber, O, McGorry, P, Amminger, P, McGuire, P, Gong, Q, Kahnz, R S, Ayesa-Arriola, R, van Amelsvoort, T, Ortiz-Garcia de la Foz, V, Calhoun, V, Cahn, W & Mechelli, A 2020, ' Neuroharmony : A new tool for harmonizing volumetric MRI data from unseen scanners ', NeuroImage, vol. 220, 171127 . https://doi.org/10.1016/j.neuroimage.2020.117127
NeuroImage, Vol 220, Iss, Pp 117127-(2020)
Neuroimage
NeuroImage, 220:117127. Academic Press
Neuroimage, 220:117127. Elsevier Science
Digital.CSIC. Repositorio Institucional del CSIC
instname
NeuroImage, Vol 220, Iss, Pp 117127-(2020)
Neuroimage
NeuroImage, 220:117127. Academic Press
Neuroimage, 220:117127. Elsevier Science
Digital.CSIC. Repositorio Institucional del CSIC
instname
descripción no proporcionada por scopus
This research has been conducted using the UK Biobank Resource (Project Number 40323) and has been supported by a Wellcome Trust’s Innovator Award (208519/Z/17/Z) to Andrea Mechelli. The present work wa
This research has been conducted using the UK Biobank Resource (Project Number 40323) and has been supported by a Wellcome Trust’s Innovator Award (208519/Z/17/Z) to Andrea Mechelli. The present work wa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0be437e0a8b15c22b75d7f4287915f88
http://hdl.handle.net/10261/236353
http://hdl.handle.net/10261/236353
Autor:
Rafael Garcia-Dias, Lea Baecker, Walter H. L. Pinaya, M. Ha, Andrea Mechelli, Cristina Scarpazza, Sandra Vieira
Publikováno v:
Translational Psychiatry
Translational Psychiatry, Vol 10, Iss 1, Pp 1-16 (2020)
Translational Psychiatry, Vol 10, Iss 1, Pp 1-16 (2020)
A pivotal aim of psychiatric and neurological research is to promote the translation of the findings into clinical practice to improve diagnostic and prognostic assessment of individual patients. Structural neuroimaging holds much promise, with neuro
Autor:
Mohammad Babakmehr, Lea Baecker, Paolo Brambilla, Willem Bruin, Umberto Castellani, Rafael Garcia-Dias, Thomas M.H. Hope, Philipp Kellmeyer, Ferath Kherif, Seyed Mostafa Kia, Adeliya Latypova, Walter Hugo Lopez Pinaya, Andre F. Marquand, Andrea Mechelli, Thomas Naselaris, Lauren J. O'Donnell, Derek A. Pisner, Cristina Scarpazza, Hugo Schnack, David M. Schnyer, Letizia Squarcina, Ghislain St-Yves, Rajat M. Thomas, Guido van Wingen, Sandra Vieira, Fan Zhang, Paul Zhutovsky
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f440dab48328c0ab6fa1cb028343cf56
https://doi.org/10.1016/b978-0-12-815739-8.01002-6
https://doi.org/10.1016/b978-0-12-815739-8.01002-6
In this chapter, we explore the potential applications of machine learning to brain disorders. Specifically, we illustrate why the use of machine learning in brain disorders is attracting so much interest among researchers and clinicians by highlight
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::832d20a26ce449a309994c8cd4837976
https://doi.org/10.1016/b978-0-12-815739-8.00003-1
https://doi.org/10.1016/b978-0-12-815739-8.00003-1