Zobrazeno 1 - 10
of 124
pro vyhledávání: '"LeRoy B. Beasley"'
Publikováno v:
Mathematics, Vol 8, Iss 5, p 676 (2020)
If a graph can be embedded in a smooth orientable surface of genus g without edge crossings and can not be embedded on one of genus g − 1 without edge crossings, then we say that the graph has genus g. We consider a mapping on the set of graphs wit
Externí odkaz:
https://doaj.org/article/12f6bb25ede64d0596fedaf093a62d85
Publikováno v:
Mathematics, Vol 7, Iss 4, p 312 (2019)
A graph has genus k if it can be embedded without edge crossings on a smooth orientable surface of genus k and not on one of genus k − 1 . A mapping of the set of graphs on n vertices to itself is called a linear operator if the image of a union of
Externí odkaz:
https://doaj.org/article/a4123ed0c64443c6ab8407182fec492f
Autor:
LeRoy B. Beasley, Seok-Zun Song
Publikováno v:
Mathematics, Vol 7, Iss 1, p 65 (2019)
Let S be an antinegative semiring. The rank of an m × n matrix B over S is the minimal integer r such that B is a product of an m × r matrix and an r × n matrix. The isolation number of B is the maximal number of nonzero entries in the matrix such
Externí odkaz:
https://doaj.org/article/2b6e00bf4e7e47d7a905da602151735d
Autor:
Seok-Zun Song, LeRoy B. Beasley
Publikováno v:
Linear and Multilinear Algebra. :1-13
Autor:
LeRoy B. Beasley
Publikováno v:
The Electronic Journal of Linear Algebra. 37:692-697
Let $m$ and $n$ be positive integers, and let $R =(r_1, \ldots, r_m)$ and $S =(s_1,\ldots, s_n)$ be nonnegative integral vectors. Let $A(R,S)$ be the set of all $m \times n$ $(0,1)$-matrices with row sum vector $R$ and column vector $S$. Let $R$ and
Autor:
LeRoy B. Beasley, Seok-Zun Song
Publikováno v:
Linear and Multilinear Algebra. 70:1732-1743
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose i j t h entry (for i ≠ j ) is nonzero whenever ( i , j ) is an edge in G and ...
Autor:
LeRoy B. Beasley
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783031053740
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d3c3d76e5c2bb3d7c6a85457ca449b0b
https://doi.org/10.1007/978-3-031-05375-7_19
https://doi.org/10.1007/978-3-031-05375-7_19
Publikováno v:
Mathematics, Vol 8, Iss 676, p 676 (2020)
Mathematics and Statistics Faculty Publications
Mathematics
Volume 8
Issue 5
Mathematics and Statistics Faculty Publications
Mathematics
Volume 8
Issue 5
If a graph can be embedded in a smooth orientable surface of genus g without edge crossings and can not be embedded on one of genus g &minus
1 without edge crossings, then we say that the graph has genus g. We consider a mapping on the set of gr
1 without edge crossings, then we say that the graph has genus g. We consider a mapping on the set of gr
Autor:
LeRoy B. Beasley, Seok-Zun Song
Publikováno v:
Linear and Multilinear Algebra. 68:1655-1662
A graph has genus k if it can be embedded without edge crossings on a smooth orientable surface of genus k and not on one of genus k−1. A mapping of the set of graphs on n vertices to itself is cal...
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society. 42:437-447
A real symmetric matrix A is called completely positive if there exists a nonnegative real \(n\times k\) matrix B such that \(A = BB^{t}\). The smallest value of k for all possible choices of nonnegative matrices B is called the CP-rank of A. We exte