Zobrazeno 1 - 10
of 174
pro vyhledávání: '"Le Anh Vinh"'
Let $\mathbb{F}_q$ be an arbitrary finite field of order $q$. In this article, we study $\det S$ for certain types of subsets $S$ in the ring $M_2(\mathbb F_q)$ of $2\times 2$ matrices with entries in $\mathbb F_q$. For $i\in \mathbb{F}_q$, let $D_i$
Externí odkaz:
http://arxiv.org/abs/1904.07847
Let $\mathcal{E}$ be a set of points in $\mathbb{F}_q^d$. Bennett, Hart, Iosevich, Pakianathan, and Rudnev (2016) proved that if $|\mathcal{E}|\gg q^{d-\frac{d-1}{k+1}}$ then $\mathcal{E}$ determines a positive proportion of all $k$-simplices. In thi
Externí odkaz:
http://arxiv.org/abs/1608.06398
Publikováno v:
Gifted Education International; Jan2024, Vol. 40 Issue 1, p25-41, 17p
Autor:
The Nguyen, Le Anh Vinh
Publikováno v:
Discrete Applied Mathematics. 322:166-170
Publikováno v:
MethodsX, Vol 7, Iss , Pp 100818- (2020)
The paper proposes a new method for conducting a literature review by structured data of more than 2200 scientific articles and 1300 researchers on SSHPA (Social Sciences and Humanities Peer Awards), an open database of Vietnamese social scientists
Externí odkaz:
https://doaj.org/article/ae1fcf1615a748ceaab76a95b1ffeec6
Autor:
Le Anh Vinh, Hoang Phuong Hanh, Bui Dieu Quynh, Trinh Thi Ngoc Lan, Bui Thi Dien, Do Duc Lan, Luong Viet Thai
Publikováno v:
Asia Pacific Journal of Education. :1-16
Autor:
Le Anh Vinh, Thang Pham
Publikováno v:
Pacific Journal of Mathematics. 309:437-451
Let $\mathbb{F}_q$ be an arbitrary finite field, and $\mathcal{E}$ be a set of points in $\mathbb{F}_q^d$. Let $\Delta(\mathcal{E})$ be the set of distances determined by pairs of points in $\mathcal{E}$. By using the Kloosterman sums, Iosevich and R
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Revista Matemática Iberoamericana. 37:1365-1398
Let Fq be an arbitrary finite field of order q and let M2(Fq) be the ring of all 2×2 matrices with entries in Fq. In this article, we study detS for certain types of subsets S⊂M2(Fq). For i∈Fq, let Di be the subset of M2(Fq) defined by Di:={x∈
Publikováno v:
Mathematische Zeitschrift. 297:1749-1765
We study a variant of the Erdős–Falconer distance problem in the setting of finite fields. More precisely, let E and F be sets in $$\mathbb {F}_q^d$$ , and $$\Delta (E), \Delta (F)$$ be corresponding distance sets. We prove that if $$|E||F|\ge Cq^